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Abstract

Misinformation detection is becoming increasingly important and relevant because it is easier than

ever to create and disseminate misinformation. How does detection ability affect the incentive to generate

misinformation? Given the practical constraints of classification technology, how should a detector

be designed? To answer these questions, this paper studies the problem where a sender strategically

communicates his type (high or low) to a receiver, and a lie detector generates a noisy signal on the

truthfulness of the sender’s message. The receiver then infers the sender’s type both through the message

from the sender and through the signal from the detector. We find a non-monotonic relationship between

the probability that the low-type sender is lying and the accuracy of detection. More accurate detection (a

higher true-positive rate and a lower false-positive rate) increases the probability of lying when the true-

positive rate is low, because of a persuasive effect. By contrast, more accurate detection decreases the

probability of lying when the true-positive rate is high, due to an alarm effect. We also characterize the

optimal detector design. The designer always chooses the lowest feasible false-positive rate for any true-

positive rate. The possibility of false-positive alarms implies that the designer chooses an intermediate

true-positive rate rather than the highest true-positive rate. Counter-intuitively, the optimal detector may

raise an alarm about a smaller percentage of misinformation when its underlying classifier is better at

distinguishing the sender’s type.

*Corresponding author. Authors are ordered alphabetically.
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“It is better that ten guilty persons escape than that one innocent suffer.”

— William Blackstone, Commentaries on the Laws of England

1 Introduction

There is widespread misinformation nowadays, including fake reviews, ad fraud, manipulated transac-

tions, fraudulent resumes, and misleading posts (Anderson and Simester, 2014; Mayzlin, Dover, and Cheva-

lier, 2014; Luca and Zervas, 2016; Gordon et al., 2021; He et al., 2022; He, Hollenbeck, and Proserpio,

2022). The emerging generative AI technologies further exacerbate such deceptive practices. These issues

have attracted much attention in places such as online platforms, political realms, and justice systems, where

trust and integrity are paramount. Yet, detecting misinformation remains challenging (Callander and Wilkie,

2007; Dziuda and Salas, 2018; Mattes, Popova, and Evans, 2023). In response to the ubiquitous deceptive

activities, platforms and regulators have devised various ways of detecting and raising an alarm about misin-

formation, usually with the help of sophisticated algorithms. For example, Yelp utilizes automated systems

to identify compensated or incentivized reviews and flags businesses with suspicious activities.1 Using an

internal system, Twitter labels false or misleading content to help people “find credible and authentic infor-

mation” and “make informed decisions.”2 To fight against fake accounts and fraudulent activities, LinkedIn

has built “automated detection systems at scale.”3 Such detection and alarm attempts help individuals de-

cide whether they will go to a particular restaurant, re-post a social media post, or connect with a Linkedin

account.

When developing mechanisms to detect deceptive information, the designer typically faces a dilemma

between increasing the likelihood of correctly recognizing deceptive content (true positives) and reducing

the probability of falsely identifying genuine content as deceptive (false positives). Such a trade-off between

Type I error (false-positive) and Type II error (false-negative) is a well-known statistical challenge faced

by many fields (Goodin, 1985; Buckland and Gey, 1994; Lieberman and Cunningham, 2009; Cappelen,

Cappelen, and Tungodden, 2023).

How does the detection ability affect the incentive to generate misinformation? Given the practical con-

straints of classification technology, how should the detectors be designed? To answer these questions, this
1https://trust.yelp.com/trust-and-safety-report/2023-report/ and https://trust.yelp.com/consumer-alerts/quarterly-alerts/.
2https://blog.x.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information.
3https://www.linkedin.com/blog/engineering/trust-and-safety/automated-fake-account-detection-at-linkedin.
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paper studies the problem where a sender strategically communicates his type (high or low) to a receiver, and

a lie detector generates a noisy signal on the truthfulness of the sender’s message.4 The receiver then infers

the sender’s type both through messages from the sender and through signals from the detector. Previous

work has considered the possibility that a detector may fail to send an alarm when there is misinformation

(false negative). Observing that the detector may make another type of mistake by sending a false alarm

in the absence of misinformation (false positive), a key contribution of our paper is to allow for both types

of mistakes in misinformation detection. In addition to being more realistic, it also leads to qualitatively

different insights about the relationship between the probability that the low-type sender is lying and the

accuracy of detection. The other main contribution of this paper is to endogenize the design of the detec-

tor rather than treating the detection technology as exogenously given. The optimal detector design is also

qualitatively different with and without consideration of false-positive alarms.

Specifically, this paper considers a model where a receiver makes a binary decision between actions

rH and rL. The sender may be either the H type (the high type) or the L type (the low type); this is his

private information. The sender always wants the receiver to take action rH , whereas the receiver prefers

to take action rH if the sender’s type is H and to take action rL if the sender’s type is L. The sender can

send a strategic message about his type (mH for high type and mL for low type) to the receiver, while a lie

detector generates a noisy signal on the truthfulness of the sender’s message. The receiver infers the sender’s

type both through the message from the sender and through the signal from the detector, and then makes a

decision.

Due to practical limitations, the detector may make two types of mistakes. It may fail to send an alarm

when the sender lies (false negative). It may also send a false alarm when the sender is truthful (false

positive). Previous work has focused on the first type of mistake by implicitly assuming that the false-

positive rate is zero (Becker and Stigler, 1974; Dziuda and Salas, 2018; Balbuzanov, 2019). Given the

practical constraints of classification technology, however, the sender cannot avoid making the second type

of mistake (false positive) unless he never sends an alarm.5 Moreover, false positives are not only ubiquitous

but also economically significant. J.P. Morgan views false positives as a multi-billion dollar problem.6

Global business loses more than $100 billion every year due to false positives, which is even more than the
4We refer to the sender as “he” and the receiver as “she” throughout the paper
5Similarly, the sender cannot avoid making the first type of mistake (false negative) unless he always sends an alarm.
6https://www.jpmorgan.com/insights/payments/analytics-and-insights/cnp-fraud-prevention-combat-chargebacks.
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actual fraud costs.7 In order to understand the strategic impact of misinformation detection in a realistic

setting, this paper explicitly considers the possibility of false-positive alarms.

We first study how the detection technology affects the equilibrium outcomes. We find a non-monotonic

relationship between the probability that the low-type sender is lying and the accuracy of detection: more

accurate detection (a higher true-positive rate and a lower false-positive rate) increases the probability of

lying when the true-positive rate is low and decreases it when the true-positive rate is high. Two effects

drive the non-monotonicity. Because the detector is more likely to send no alarm when the sender is high-

type than when he is low-type, the receiver becomes more certain that the sender is high-type if she receives

no alarm. The presence of a detector persuades the receiver to trust the sender’s mH message more in

this case. We call this posterior belief-enhancing effect a persuasive effect. Because the detector is more

likely to send an alarm when the sender is low-type than when he is high-type, the receiver becomes more

certain that the sender is low-type if she receives an alarm. The presence of an alarm causes the receiver

to have less trust about the sender’s mH message. We call this posterior belief-reducing effect an alarm

effect. When the true-positive rate is low, the receiver adopts a mixed strategy between actions rH and rL

after observing message mH and no alarm.8 As the detector becomes more accurate, for a fixed sender’s

strategy, the receiver’s posterior belief after observing no alarm will be higher due to the larger persuasive

effect. So, the low-type sender can afford to lie more frequently in equilibrium. When the true-positive

rate is high, the detector will catch a high proportion of low-type senders who are lying. This creates a

low incentive for lying. Consequently, the receiver always takes the sender’s desired action if there is no

alarm and adopts a mixed strategy after seeing an alarm. As the detector becomes more accurate, for a given

sender’s strategy, the receiver’s posterior belief after observing an alarm will be lower due to a larger alarm

effect. In equilibrium, the low-type sender needs to lie less frequently in order for there to be a positive

probability that the receiver will take the sender’s desired action even after observing an alarm.

We then characterize the optimal detector design. The receiver and both types of sender all benefit from

a lower false-positive rate, whereas the low-type sender is hurt by a higher true-positive rate. Therefore,

the designer always chooses the lowest feasible false-positive rate for any given true-positive rate. The

possibility of false-positive alarms implies that the designer will not choose the largest true-positive rate.

Instead, the designer chooses different intermediate true-positive rates for different objectives. Counter-
7https://www.vesta.io/blog/false-positives-and-how-to-prevent-them.
8In other words, the receiver takes action rH with some probability and takes action rL with some probability after observing

message mH and no alarm.
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intuitively, the optimal detector may raise an alarm about a smaller percentage of misinformation when its

underlying classifier is better at distinguishing the sender’s type.

Related Literature

Our research is most closely related to the strategic communication literature. One stream of the litera-

ture on verifiable disclosure, initiated by Grossman (1981) and Milgrom (1981), assumes that information is

verifiable and thus agents can withhold it but cannot lie. Another stream of the literature on cheap talk, de-

veloped by Crawford and Sobel (1982), considers a model where information is unverifiable and thus agents

can freely send deceptive messages. Later work studies strategic communication in markets where firms

and consumers interact (Villas-Boas, 2004; Guo, 2009; Guo and Zhao, 2009; Kuksov, 2009; Kuksov and

Lin, 2010; Mayzlin and Shin, 2011; Sun, 2011; Zhang, 2013; Branco, Sun, and Villas-Boas, 2016; Iyer and

Singh, 2018; Sun and Tyagi, 2020; Iyer and Singh, 2022; Lauga, Ofek, and Katona, 2022; Zheng and Singh,

2023; Lee, Shin, and Yu, 2024). In the verifiable disclosure literature, senders can be viewed as having an

infinite lying cost and therefore never lie, whereas they have zero lying cost in the cheap talk literature. The

more recent literature on the theory of costly lying (Kartik, Ottaviani, and Squintani, 2007; Kartik, 2009)

assumes that the sender has a finite lying cost and can be viewed as the middle ground of two extreme cases.

The presence of lying cost in the above papers allows messages to have a signaling role. However, the

information is still completely unverifiable. Recent work (Dziuda and Salas, 2018; Balbuzanov, 2019) starts

considering the possibility of an imperfect detector that may detect the lie with some probability. In such

cases, the sender’s message becomes partially verifiable.

Due to practical limitations, the detector may make two types of mistakes. It may fail to send an alarm

when the sender lies (false negative). It also may send a false alarm when the sender is telling the truth

(false positive). By assuming that the detector detects the lie with some probability, previous work implicitly

assumes that there is no false positive (the false-positive rate is zero). A major contribution of our paper is

to allow for both types of mistakes by studying a detector with general true-positive and false-positive rates.

The other key contribution is to endogenize the design of the detector rather than treating the detection

technology as exogenously given. One reason that previous literature has focused on exogenous detectors is

that, in the absence of false positives, the receiver’s payoff, the high-type sender’s payoff, and social welfare

are all (weakly) increasing in the true-positive rate of the detector; we will discuss this as a benchmark

situation in section 3.2. So, there is no trade-off, and the designer always wants to maximize the true-
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positive rate of the detector. In contrast, we will show that, in the presence of false-negative alarms, the

designer prefers an intermediate true-positive rate to the highest true-positive rate. In this case, the optimal

detector design becomes both non-trivial and managerially important.

We use an information design framework to study the general design of the detector. Since Rayo and

Segal (2010) and Kamenica and Gentzkow (2011) initiated the study of the optimal design of flexible in-

formation provision with commitment, researchers have found its applications in various areas, including

advertising, recommendation algorithms, influencer marketing, search, and online platforms (Jerath and

Ren, 2021; Pei and Mayzlin, 2022; Ke, Lin, and Lu, 2022; Iyer and Zhong, 2022; Berman, Zhao, and Zhu,

2022; Yao, 2023; Shin and Wang, 2024; Shulman and Gu, 2024). Unlike papers in this literature, the in-

formation design problem in our model is just a subgame of a costly signaling game. Due to the presence

of the sender’s private information, the sender sends strategic signaling messages to influence the receiver’s

decision, on top of the information design of the detection technology. In addition, we are studying the

design of detection technology rather than the information itself.

Our paper is also related to the growing literature on strategic interactions between humans and algo-

rithms. Liang (2019); Miklós-Thal and Tucker (2019); Calvano et al. (2020); Salant and Cherry (2020);

O’Connor and Wilson (2021) and Montiel Olea et al. (2022) study competitive dynamics among multiple

algorithms. Berman and Katona (2013, 2020) study the impact of online algorithms on advertisers’ and

social media users’ behavior. Eliaz and Spiegler (2019) and Björkegren, Blumenstock, and Knight (2020)

look at algorithm design with information manipulation by strategic agents. Qian and Jain (2024) investigate

the impact of recommendation systems on digital content creation. Iyer and Ke (2024) study on strategic

model selection in competitive environments. Iyer, Yao, and Zhong (2024) examine the precision-recall

trade-off in the deployment of machine learning algorithms for targeting. We focus instead on the design of

a misinformation detector in a strategic communication game.

Lastly, our paper is related to the literature on information misrepresentation. Anderson and Simester

(2014); Mayzlin, Dover, and Chevalier (2014); Lappas, Sabnis, and Valkanas (2016) and Luca and Zervas

(2016) provide empirical evidence about the prevalence of strategic review manipulation. Mayzlin (2006)

and Dellarocas (2006) theoretically study firms’ costly misrepresentation of product quality. A growing

literature investigates deceptive advertising practices that promote false claims about product quality (Pic-

colo, Tedeschi, and Ursino, 2015; Zinman and Zitzewitz, 2016; Rao and Wang, 2017; Piccolo, Tedeschi,

and Ursino, 2018; Rhodes and Wilson, 2018) Jin, Yang, and Hosanagar (2023) examines a widespread

6



phenomenon on e-commerce platforms where sellers place fake orders to boost the search ranking of their

products. Some papers also examine the regulation and policy implications of deceptive activities (Pic-

colo, Tedeschi, and Ursino, 2015; Rhodes and Wilson, 2018; Papanastasiou, 2020; Chen and Papanasta-

siou, 2021). We contribute to this literature by considering the trade-offs between the false-positive and

true-positive rates of the detection algorithm and studying the interaction between the sender’s strategic

communication strategy and the detection technology.

The rest of this paper is organized as follows. Section 2 introduces the main model. Section 3 presents

several benchmarks. Section 4 solves the equilibrium and compares the results with the benchmarks. Section

5 concludes.

2 Model

2.1 States, Actions, and Payoffs

There are two players: a sender (S) and a receiver (R). The receiver makes a binary decision between

actions rH and rL. Depending on the specific applications, the receiver’s action can be purchasing a product

from an e-commerce seller, visiting a restaurant, re-posting social media content, sending a business contact

request, etc. The sender is the H type with probability ρ and the L type with probability 1− ρ (we will use

type H/L and high-type/low-type interchangeably throughout the paper). The sender’s type is his private

information and can be interpreted as the quality of an online marketplace seller’s product, the quality of

a restaurant, the trustworthiness of a social media content creator, the authenticity of an online business

account, etc. The sender always wants the receiver to take action rH , whereas the receiver prefers to take

action rH if the sender’s type is H and to take action rL if the sender’s type is L. Table 1 summarizes

players’ payoffs.

(sender payoff, receiver payoff) action rH action rL

type H sender (∆S
H > 0,∆R

H > 0) (0, 0)

type L sender (∆S
L > 0,∆R

L < 0) (0, 0)

Table 1: Players’ Payoffs

The sender always earns a positive payoff if the receiver takes action rH , ∆S
H ,∆S

L > 0. The receiver’s
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payoff is positive if she takes action rH when the sender’s type is H , ∆R
H > 0, and negative if she takes

action rH when the state is L, ∆R
L < 0. Both players’ payoffs are normalized to zero if the receiver takes

action rL. Denote by ρ̂ ∈ (ρ, 1) the critical belief such that the receiver is indifferent between taking either

action, (1− ρ̂)∆R
L + ρ̂∆R

H = 0. We study the non-trivial case where the receiver will take action rL without

any information by assuming that (1 − ρ)∆R
L + ρ∆R

H < 0 ⇔ ρ < ρ̂. We also focus on the case where

∆S
L +∆R

L ≤ 0, which means that successful lying by a low-type sender does not increase social welfare.9

The sender can send a non-verifiable but detectable message m ∈ {mH ,mL} about his type to the

receiver. The sender is lying if his message is not aligned with his type (i.e., sending message mH if his

type is L or sending message mL if his type is H). Consistent with previous literature, the sender needs

to incur a positive cost of C if he lies. The lying cost may come from the sender’s intrinsic aversion to

lying (Gneezy, 2005), the potential ex-post penalty for lying, or the effort of manipulating the information.

We rule out the uninteresting case where the sender never lies due to a high lying cost by assuming that

C < min{∆S
H ,∆S

L}.

A lie detector generates a noisy signal l ∈ {a, na} on the truthfulness of the sender’s message if the

sender sends mH . The detector will send an alarm, l = a, to the receiver if it thinks the message mH is sent

by a type L sender. It will send a no-alarm signal, l = na, to the receiver if it thinks the message mH is sent

by a type H sender or the message is mL.

Eventually, the receiver infers the sender’s type through messages from the sender and the detector and

then makes a decision.

The timing of the game is as follows:

1. The designer designs the lie detector (the details are in the following paragraphs).

2. Nature draws the sender’s type θ ∈ {H,L}.

3. The sender sends a message m ∈ {mH ,mL} to the receiver.

4. The detector sends a signal l ∈ {a, na} to the receiver.

5. The receiver takes an action r ∈ {rH , rL}.
9Our analyses can be easily extended to the case where ∆S

L +∆R
L > 0.

8



Detector Design

A designer designs the detector. The designer’s goal depends on the specific contexts, including maxi-

mizing the receiver’s expected payoff, maximizing the high-type sender’s expected payoff, and maximizing

social welfare. We assume that the designer has access to an exogenously given classifier that generates a

prediction for the message’s trustworthiness when the sender sends message mH .10 The designer then de-

cides whether to send an alarm based on the prediction. More specifically, the classifier generates a binary

outcome s ∈ {sL, sH}. We assume without loss of generality that the message is more likely to be truthful

if the outcome is sH . Formally, denote the probability of outcome s conditional on the sender’s true type θ

by ϕ(s|θ). Then, ϕ(sH |θ = H) > ϕ(sH |θ = L) and ϕ(sL|θ = L) > ϕ(sL|θ = H).11 We refer to ϕ as the

classifier’s capacity, as it reflects the quality of the classification. For example, the classifier perfectly reveals

the truthfulness of the message if ϕ(sH |θ = H) = ϕ(sL|θ = L) = 1, whereas it is not very informative if

ϕ(sH |θ = H) is close to ϕ(sH |θ = L) and ϕ(sL|θ = L) is close to ϕ(sL|θ = H). In reality, the classifier

will not be perfect at classification due to practical limitations. So, we assume that 0 < ϕ(s|θ) < 1 for

s ∈ {sH , sL} and θ ∈ {H,L}.

Given the classifier’s prediction, the designer decides whether to send an alarm. The designer’s decision

can be characterized by the probability of sending an alarm given classification outcome sL, λL = Pr(l =

a|sL), and the probability of sending an alarm given classification outcome sH , λH = Pr(l = a|sH). We

will refer to {λL, λH} as the alarm rule. In a perfect world, a detector sends an alarm if and only if a low-

type sender sends a deceptive message mH . Therefore, the detector’s true-positive rate, denoted by β, is

the probability of sending an alarm when a type L sender sends message mH , Pr(l = a | m = mH , θ = L).

The detector will send a false alarm if a high-type sender sends a message mH . So, the detector’s false-

positive rate, denoted by α, is Pr(l = a | m = mH , θ = H). For a given alarm rule {λL, λH}, the

true-positive rate is β = ϕ(sL|θ = L)λL + ϕ(sH |θ = L)λH and the false-positive rate is α = ϕ(sL|θ =

H)λL + ϕ(sH |θ = H)λH , according to Bayes’ rule. We refer to α and β as the detector’s capacity because

they reflect the quality of the detection. We can represent a detector by its capacity, {β, α}, or by its alarm

rule and the capacity of the classifier, {λL, λH , ϕ}. Intuitively, a stronger detector correctly alarms a lie

more frequently and mistakenly alarms a truth-telling message less frequently. This leads to the following
10We will show that, in equilibrium, the sender must be the low type if he sends message mL; there is no uncertainty about the

sender’s type when the receiver sees message mL.
11Conditions ϕ(sH |θ = H) > ϕ(sH |θ = L) and ϕ(sL|θ = L) > ϕ(sL|θ = H) are equivalent to Pr(θ = H|sH) > Pr(θ =

H|sL) by Bayes’ rule.

9



definition, which is useful in the subsequent analyses.

Definition 1. A detector {β′, α′} is stronger than a detector {β, α} if and only if the following conditions

hold: β′ ≥ β, α′ ≤ α, and at least one of the inequalities is strict.

Receiver’s Belief Updating

Without any information, the receiver’s prior belief that the sender is high-type is ρ. The receiver updates

her belief after the sender chooses a message based on the sender’s communication strategy and Bayes’

rule. The updated belief is the intermediate belief of the receiver. The receiver updates the belief again

after observing the detector’s signal. Because this belief takes into account all the available information the

receiver can obtain, it is the posterior belief of the receiver. Figure 1 illustrates the receiver’s belief updating

processes.

Prior Belief

• Intermediate belief
given mH

• Intermediate belief
given mL

• Posterior belief given mH and no alarm

• Posterior belief given mH and an alarm

• Posterior belief given mL

mes
sa

ge
m
H

messagem
L

no
ala

rm

alarm

no alarm

Figure 1: Receiver’s Belief Updating Processes

In reality, the receiver may not observe the sender’s message and the alarm signal sequentially. For

example, they may see both the reviews and alarm information about a restaurant on Yelp. In such cases,

the receiver will directly reach the posterior belief given the information. This does not change our analysis

because we introduce the intermediate belief in order to present the intuition and underlying mechanisms,

rather than to be interpreted literally.
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2.2 Strategies and Equilibrium Concept

Because we are studying a multi-stage game with incomplete information, we consider the Perfect

Bayesian Equilibrium (PBE hereafter). We denote the sender’s strategy by σS(m | θ), the probability

of sending message m ∈ {mL,mH} when the sender’s type is θ ∈ {L,H}. We denote the receiver’s

posterior belief about the sender’s type by b(t | m, l), the probability that the sender’s type is t ∈ {L,H}

given the sender’s message m ∈ {mL,mH} and the detector’s signal l ∈ {a, na}. We denote the receiver’s

strategy by σR(r | m, l), the probability that the receiver takes action r ∈ {rL, rH} given the sender’s

message m ∈ {mL,mH} and the detector’s signal l ∈ {a, na}.

One can see that the receiver will take action rH if her posterior belief about the sender’s probability of

being type H is higher than ρ̂ and will take action rL if her posterior belief is lower than ρ̂. Intuitively, the

sender has no incentive to pretend to be type L by sending costly misinformation when he is type H. The

following lemma formalizes the intuition that the high-type sender is always truth-telling in equilibrium.

Lemma 1. In any PBE, type H sender always sends the message m = mH . The receiver always takes

action r = rL after receiving message m = mL, if the sender sends message mL with a positive probability

in equilibrium.

Proof. See A.1.

To simplify notation, we denote the low-type sender’s strategy by σS ≡ σS(mH | L) and denote the

receiver’s strategy by σR
na ≡ σR(rH | mH , na), σR

a ≡ σR(rH | mH , a), and σR
L,na ≡ σR(rH | mL, na).

Because Lemma 1 has pinned down the strategy of type H sender and the strategy of the receiver upon

receiving message mL, in the subsequent analyses, we will use {σS∗
, σR

na
∗
, σR

a
∗
, α∗, β∗} to denote the

entire equilibrium, and will use {σS∗
, σR

na
∗
, σR

a
∗} to denote the equilibrium with an exogenous lie detector.

3 Some Benchmarks

3.1 No alarm

Lie detection plays an important role in our model. To better understand its strategic role, we consider

a benchmark where the detector never sends an alarm (both the true positive and false positive rates equal

zero).

11



Lemma 2. Suppose the detector always sends a no-alarm signal, na. In the unique PBE, the low-type

sender sends message mH with probability −ρ∆R
H/[(1−ρ)∆R

L ] ∈ (0, 1); the receiver has a posterior belief

of ρ̂ and takes action rH with probability C/∆S
L ∈ (0, 1) upon observing message mH . Both the low-type

sender and the receiver obtain zero expected payoff. The high-type sender obtains an expected payoff of

∆S
HC/∆S

L.

Proof. See A.2.

In this benchmark, the unique PBE is a semi-pooling equilibrium. A high-type sender always sends

a truthful message, whereas a low-type sender uses a mixed strategy, with some probability of sending a

truthful message mL and some probability of pretending to be the high-type by sending message mH . The

probability of lying is such that the receiver has a posterior belief of ρ̂ upon seeing mH , and is indifferent

between taking either action. When the prior belief that the sender is type H, ρ, is higher, the receiver is

more inclined to believe that the sender is type H upon receiving message mH for a given sender’s strategy.

Therefore, the type L sender is more likely to send a deceptive message mH . Upon receiving message mH ,

the receiver does not know whether the sender is a truth-telling high-type sender or a deceptive low-type

sender and uses a mixed strategy between actions rH and rL. The probability of taking action rH is such

that a low-type sender is indifferent between lying and truth-telling. The sender’s cost of lying increases in

C. For him to be indifferent between lying and not lying, the benefit of lying must also increase in C. So, in

equilibrium, upon observing message mH , the receiver takes the sender’s desired action rH more frequently

when the lying cost C increases.

3.2 No false-positive alarm

As discussed in the introduction, previous work on lie detection under strategic communication implic-

itly assumes that there is no false-positive alarm. Those studies only consider one type of mistake, where

a detector may fail to send an alarm when there is misinformation (false negative). This section consid-

ers a benchmark consistent with previous literature by assuming that there is a detector that never sends a

false-positive alarm (α = 0).

Lemma 3 (Exogenous detector). Suppose the detector’s false-positive rate is zero. The low-type sender is

lying with a higher likelihood as the detector’s true-positive rate β increases but stops lying when β exceeds

β̂ := 1− C/∆S
L. The PBEs are the following:
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1. High lying cost C ≥ − ρ∆R
H

(1−ρ)∆R
L

∆S
L


σS∗

= − ρ∆R
H

(1−β)(1−ρ)∆R
L

, σR
na

∗
= C

(1−β)∆S
L

, σR
a
∗
= 0, 0 < β < β̂
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Proof. See A.3.

Figure 2: Probability of lying under different detectors without false-positive alarms for ∆R
H = 0.5,∆R

L =
−0.5,∆S

L = 0.5, C = 0.3, ρ = 0.3, and any ∆S
H > 0.

Figure 2 illustrates the low-type sender’s equilibrium probability of lying as a function of the detector’s
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true-positive rate β. In the absence of false-positive alarms, the receiver may see an alarm only if the sender

is low-type. In that case, an alarm eliminates all the uncertainty about the sender’s type. The receiver’s

posterior belief goes all the way to zero after observing an alarm. The receiver never takes the sender’s

desired action when there is an alarm. If a low-type sender is caught lying by the detector, he obtains no

benefit from lying but instead incurs the cost of lying. When the true-positive rate is high, the expected

payoff from lying is negative because the low-type sender has a high chance of being detected. So, the

sender never lies and there is no misinformation when the true-positive rate β exceeds a threshold β̂. We

will show in the main model that this is not the case when we consider false-positive alarms.

We now study the endogenous detector design. To have a well-defined equilibrium payoff, we select

the Pareto-optimal equilibrium for those cases with multiple equilibria. For a given detector (β, 0), denote

the receiver’s expected equilibrium payoff by EUR
0 (β), the high-type sender’s expected equilibrium payoff

by EUS
0,H(β), and the low-type sender’s expected equilibrium payoff by EUS

0,L(β). The social welfare is

EW0(β) = EUR
0 (β)+ρEUS

0,H(β)+(1−ρ)EUS
0,L(β). We consider three types of objectives by the designer,

including choosing β to maximize the receiver’s expected payoff EUR
0 (β), the high-type sender’s expected

payoff EUS
0,H(β), or the social welfare EW0(β).

Lemma 4 (Endogenous detector). The receiver’s expected payoff, the high-type sender’s expected pay-

off, and the social welfare all (weakly) increase in the true-positive rate β. The optimal true positive

rate for the receiver is any β ≥ β̂. The optimal true positive rate for the high-type sender is any β ≥

min
{
1 + ρ∆R

H/[(1− ρ)∆R
L ], β̂

}
. The optimal true positive rate for social welfare is any β ≥ β̂.

Proof. See A.5.

The receiver benefits from better distinguishing two types of senders and making a more informed

decision. As long as the true-positive rate exceeds β̂, the low-type sender stops lying due to the high

likelihood of being caught. So, the receiver can perfectly infer the sender’s type from the sender’s message

m, and can achieve the highest payoff for any β that is high enough. There is never an alarm when the

sender is high type. So, a high-type sender only cares about the receiver’s action upon seeing no alarm.

Because the receiver always takes the sender’s desired action when β ≥ min
{
1 + ρ∆R

H/[(1− ρ)∆R
L ], β̂

}
,

the high-type sender achieves the highest payoff for any such β. Because society benefits from a lower level

of misinformation, social welfare achieves its maximum when β is high enough such that the sender stops

lying.
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The general message from the lemma is simple and intuitive: when there is no false positive, the more

accurate the detector is, the better. So, there is no trade-off, and the detector designer always prefers a

higher true-positive rate. In reality, the detector may make another type of mistake by sending a false

alarm in the absence of misinformation (false positive). It is generally impossible to eliminate either type

of mistake unless the detector always or never sends alarms. We will show in the main model that the

designer strictly prefers an intermediate true-positive rate to the highest true-positive rate in the presence of

false-negative alarms. A higher true-positive rate may reduce the receiver’s expected payoff, the high-type

sender’s expected payoff, and the social welfare. In this case, the optimal detector design becomes both

non-trivial and managerially important.

4 Equilibrium

4.1 Equilibrium with an exogenous detector

We first consider the equilibrium with an exogenous detector {β, α} for two reasons. First, the entire

equilibrium is complicated with three strategic players: the sender, the receiver, and the designer/detector.

The equilibrium with only the sender and the receiver is simpler to solve and serves as a building block to

solve the entire equilibrium. Second, by abstracting away the strategic role of the designer/detector, we can

more clearly understand the driving force of different results.

The detector is uninformative if α = β. In such cases, the equilibrium outcome is essentially the same as

the equilibrium of the no-alarm benchmark in section 3.1.12 We will present the formal characterization of

the equilibrium in the appendix, and will show that an uninformative detector is never optimal in equilibrium.

For any detector such that α > β, we can obtain essentially the same equilibrium outcome with an alternative

detector whose α < β. Therefore, we focus on the interesting case where the detector may send both types

of alarms and the false-positive rate is lower than the true-positive rate, 0 < α < β.

Proposition 1 (Equilibrium with an Exogenous Detector). Suppose the detector {β, α}, 0 < α < β, is

exogenously given. The receiver’s posterior belief about the sender being type H upon observing message

mH and an alarm is αρ/[αρ + βσS(1 − ρ)]. The receiver’s posterior belief about the sender being type

12Technically, there is a subtle difference between the two cases because we need to specify the receiver’s strategies both upon
receiving an alarm and upon receiving no alarm in the α = β > 0 case, though either strategy is the same as the receiver’s strategy
in the no alarm benchmark because the detector is not informative.
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H upon observing message mH and no alarm is (1 − α)ρ/[(1 − α)ρ + (1 − β)σS(1 − ρ)]. The low-type

sender’s probability of lying first increases and then decreases in the detector’s true-positive rate β. The

PBEs are the following.

σS∗


= min

{
− (1−α)ρ∆R

H

(1−β)(1−ρ)∆R
L

, 1
}
, β < β̂

∈
[
− αρ∆R

H

β(1−ρ)∆R
L

,min
{
− (1−α)ρ∆R

H

(1−β)(1−ρ)∆R
L

, 1
}]

, β = β̂

= − αρ∆R
H

β(1−ρ)∆R
L

, β > β̂

σR
na

∗


= 1, α < 1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β)

∈
[
min

{
C

(1−β)∆S
L

, 1
}
, 1
]
, α = 1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β)

= min
{

C
(1−β)∆S

L

, 1
}
, α ∈

(
1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β), β
)

σR
a
∗
= max

{
C

β∆S
L

− 1− β

β
, 0

}
Proof. See A.3.

4.1.1 Effect of Lie Detection on Receiver’s Posterior Belief

After observing message mH but before observing the detector’s signal, the receiver’s intermediate

belief about the sender’s type is Pr(θ = H|m = mH) = ρ/[σS(1−ρ)+ρ]. We now disentangle two effects

of lie detection on the receiver’s posterior belief, illustrated by Figure 3. We also examine how a stronger

lie detector changes the belief-updating process by comparing the receiver’s posterior beliefs under detector

{β, α} and a stronger detector {β′, α′}.

1. Persuasive effect: Because the detector is more likely to send no alarm when the sender is high-type

than when he is low-type, the receiver becomes more certain that the sender is high-type if she receives

no alarm. The presence of a detector persuades the receiver to trust the sender’s mH message more in

this case. We call this posterior belief-enhancing effect a persuasive effect.

Formally, the persuasive effect raises the receiver’s belief from the intermediate belief, Pr(θ = H|m =

mH) = ρ/[σS(1 − ρ) + ρ], to the posterior belief, Pr(θ = H|m = mH , l = na) = (1 − α)ρ/[(1 −

α)ρ+ (1− β)σS(1− ρ)]. The posterior belief increases in the true-positive rate and decreases in the

false-positive rate. Therefore, the persuasive effect is larger under a stronger detector, as illustrated

by Figure 4.
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Prior Belief

• Intermediate belief
given mH

• Intermediate belief
given mL

• Posterior belief given mH and no alarm

• Posterior belief given mH and an alarm

• Posterior belief given mL
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Persuasive Effect (+)

Alarm Effect (−)

Figure 3: The Effect of Lie Detection on the Receiver’s Belief.

Upon receiving message mH and no alarm, the receiver takes the sender’s desired action r = rH if

the posterior belief exceeds ρ̂, Pr(θ = H|m = mH , l = na) ≥ ρ̂. This condition is more likely to be

satisfied under a stronger detector because a stronger detector generates a larger persuasive effect.

Intermediate belief
given mH

• Posterior belief
under a weaker detector

• Posterior belief
under a weaker detector

• Posterior belief under a stronger detector

• Posterior belief under a stronger detector

no
ala

rm

alarm

no
al

ar
m

alarm

Persuasive Effect (+)
under a weaker detector

Alarm Effect (−)
under a weaker detector

Persuasive Effect (+)
under a stronger detector

Alarm Effect (−)
under a stronger detector

Figure 4: The Effect of a Stronger Lie Detector on the Receiver’s Belief.

2. Alarm effect: Because the detector is more likely to send an alarm when the sender is low-type than

when he is high-type, the receiver becomes more certain that the sender is low-type if she receives an

alarm. The presence of an alarm makes the receiver less trustful about the sender’s mH message. We

call this posterior belief-reducing effect an alarm effect.
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Formally, the alarm effect reduces the receiver’s belief from the intermediate belief, Pr(θ = H|m =

mH) = ρ/[σS(1− ρ)+ ρ], to the posterior belief, Pr(θ = H|m = mH , l = a) = αρ/[αρ+βσS(1−

ρ)]. The posterior belief decreases in the true-positive rate and increases in the false-positive rate.

Therefore, the (absolute value of the) alarm effect is larger under a stronger detector, as illustrated

by Figure 4.

A key difference between our setting and the no false-positive alarm benchmark is related to the alarm

effect. In the absence of false-positive alarms (α = 0), the receiver may see an alarm only if the sender

is low-type. Therefore, an alarm eliminates all the uncertainty about the sender’s type. The receiver’s

posterior belief goes all the way to zero after observing an alarm. Thus, the alarm effect does not

depend on the true-positive rate of the detector; two detectors with very different β generate the same

effect on the posterior belief if they send an alarm. In contrast, in the presence of false-positive alarms,

two detectors with the same false-positive rate but different true-positive rates generate different alarm

effects. As we will show in the next subsection, variations in the alarm effects lead to qualitatively

different equilibrium outcomes.

Upon receiving message mH and an alarm, the receiver takes the sender’s desired action r = rH if

the posterior belief exceeds ρ̂, Pr(θ = H|m = mH , l = a) ≥ ρ̂. This condition is less likely to

be satisfied under a stronger detector because a stronger detector generates a larger (negative) alarm

effect.

4.1.2 Non-monotonic Relationship Between the Detector’s Capacity and the Sender’s Probability of

Lying

According to Proposition 1, there is a non-monotonic relationship between the detector’s capacity α and

β and a low-type sender’s probability of lying σS . Figure 5 illustrates such non-monotonicity by plotting a

low-type sender’s probability of lying as a function of the detector’s true-positive rate for three fixed false-

positive rates. As we can see from the figure, a stronger detector increases the probability of lying when the

true-positive rate is low and decreases the probability of lying when the true-positive rate is high. Below, we

discuss the underlying mechanism and intuition in detail.
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Figure 5: Probability of lying under different detectors for ∆R
H = 0.5,∆R

L = −0.5,∆S
L = 0.5, C = 0.3, ρ =

0.3, and any ∆S
H > 0.

Low True-positive Rate

When the detector’s true-positive rate β is low, the detector will fail to catch many low-type senders

who are lying. This creates a strong incentive for a low-type sender to pretend to be a high-type. So, the

probability of lying is at a relatively high level. This leads to a lower posterior belief. Therefore, the receiver

will never take the sender’s desired action upon observing an alarm. A low-type sender pretending to be a

high type will not be detected with probability 1− β.

If the receiver always takes the sender’s desired action rH after observing message mH and no alarm,

the expected benefit of lying is (1 − β)∆S
L, which is larger than the lying cost C when β is low. However,

this implies that a low-type sender will always lie, and that the receiver should not take action rH upon

observing no alarm. This is a contradiction. If the receiver never takes the sender’s desired action rH after

observing message mH and no alarm, no low-type sender will lie. But this implies that only the high type

will send message mH and that the receiver’s posterior belief upon observing mH will be one. Hence, the

receiver should always take action rH upon observing message mH . This is also a contradiction. In sum, the

only equilibrium for the receiver is to follow a mixed strategy after observing message mH and no alarm.

This implies that her posterior belief after observing message mH and no alarm is exactly ρ̂.

For a fixed sender’s strategy, as the detector becomes stronger, the receiver’s posterior belief after observ-
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ing no alarm will be higher due to the larger persuasive effect. Given that the posterior belief in equilibrium

remains ρ̂, one can see that the low-type sender lies more frequently, which lowers the base rate of a high-

type sender conditional on sending message mH . Therefore, the equilibrium probability of lying increases

as the detector becomes stronger. Figure 6 illustrates the mechanism.

Prior Belief

•
Intermediate belief

under the
initial lying prob.

◦
Intermediate belief

under a
higher lying prob.

•
Intermediate belief

under
any lying prob.

• Posterior belief under the initial detector

• Posterior belief under the initial detector

◦ Posterior belief under a stronger detector
(a larger persuasive effect)

◦ Posterior belief under a stronger detector

• Posterior belief under any detector

Critical Belief ρ̂
m
H

mH

m
L

no ala
rm

alarm

no alarm

alarm

no alarm

Figure 6: How a stronger lie detector increases the probability of lying when β is low.

High True-positive Rate

When the detector’s true-positive rate β is high, the detector will catch a high proportion of low-type

senders who are lying. This creates a low incentive for a low-type sender to pretend to be a high type. So,

the probability of lying is at a relatively low level. This implies that the base rate of a low-type sender

conditional on sending message mH is low. So, after observing message mH and before observing the

alarm, the receiver has a high intermediate belief about the sender being high-type. Consequently, the

receiver always takes the sender’s desired action if there is no alarm. Additionally, even after the receiver

observes an alarm that reduces her belief, the posterior belief is still high enough such that the receiver may

take the sender’s desired action with a positive probability.

Suppose the receiver’s posterior belief after observing an alarm is higher than ρ̂. The receiver always

takes the sender’s desired action regardless of the alarm. Then, the low-type sender will always lie because

the benefit of lying ∆S
L is larger than the lying cost C. In this scenario, the prior belief equals the intermediate

belief because all senders send the same message. But then the receiver’s posterior belief after observing an

alarm, which is always lower than the intermediate belief, will be lower than the prior belief ρ < ρ̂. This
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is a contradiction. Suppose, instead, that the posterior belief after observing an alarm is lower than ρ̂. The

receiver will never take action rH after observing an alarm. A low-type sender pretending to be a high type

will not be detected with probability 1 − β. Even if the receiver always takes the sender’s desired action

upon receiving no alarm, the expected benefit of lying is (1− β)∆S
L, which is smaller than the lying cost C

when β is high. So, no low-type sender will lie. However, in that case, an alarm can only be a false-positive

alarm, and the receiver’s posterior belief after seeing message mH will be one regardless of the alarm signal.

This is also a contradiction. In sum, the receiver’s posterior belief after observing an alarm is exactly ρ̂. This

implies that the receiver adopts a mixed strategy after observing message mH and an alarm.

For a given sender’s strategy, as the detector becomes stronger, the receiver’s posterior belief after ob-

serving an alarm will be lower due to a larger alarm effect. In order to maintain a posterior belief of ρ̂, the

low-type sender needs to lie less frequently, which raises the base rate of a high-type sender conditional on

sending message mH and increases the posterior belief. Therefore, the equilibrium probability of lying de-

creases as the detector becomes stronger. Figure 7 illustrates the mechanism. This decreasing pattern of the

probability of lying is absent in the benchmark (with no false-positive alarms) because there is no variation

in the alarm effect when α = 0 : a stronger detector with a higher β does not affect the receiver’s inference

about the sender’s type conditional on seeing an alarm.
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Intermediate belief

under the
initial lying prob.

◦
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lower lying prob.

•
Intermediate belief

under
any lying prob.

• Posterior belief under the initial detector
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◦ Posterior belief under a stronger detector

◦
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Posterior belief under a stronger detector

• Posterior belief under any detector
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Figure 7: How a stronger lie detector decreases the probability of lying when β is high.

In sum, the persuasive and alarm effects jointly drive the non-monotonic relationship between the detec-

tor’s capacity and the sender’s probability of lying. The persuasive effect leads to an increasing pattern when

the detector is weak, whereas the alarm effect generates a decreasing pattern when the detector is strong.
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4.1.3 Effect of Lie Detection on the Payoffs

We need a well-defined equilibrium payoff to study the effect of lie detection on welfare. According

to Proposition 1, the equilibrium is unique as long as α ̸= 1 + [(1 − ρ)∆R
L/(ρ∆

R
H)](1 − β), β ̸= β̂, and

α ̸= β. For those cases with multiple equilibria, we select the Pareto-optimal equilibrium.13 Section A.4 in

the appendix contains details of the refinement. The next proposition summarizes the effect of lie detection

on the expected payoff of the receiver, low-type sender, and high-type sender.

Proposition 2. 1. For a given true-positive rate β, the expected payoff of the receiver, the expected payoff

of the low-type sender, and the expected payoff of the high-type sender are all weakly decreasing in

the false-positive rate α.

2. For a given false-positive rate α, the expected payoff of the receiver and the expected payoff of the

high-type sender are weakly increasing in the true-positive rate β, and the expected payoff of the

low-type sender is weakly decreasing in the true-positive rate β.

The receiver benefits from a more informed decision. She wants to better match the action with the

sender’s true type. A stronger detector (higher true-positive rate and lower false-positive rate) helps separate

high-type and low-type senders. So, the receiver payoff increases in the true-positive rate and decreases in

the false-positive rate. Similarly, a high-type sender wants to distinguish himself from a low-type sender

and, therefore, benefits from a higher true-positive rate and a lower false-positive rate.

The effect of lie detection on a low-type sender’s payoff is more complicated. A low-type sender benefits

from successfully pretending to be a high-type sender. A higher true-positive rate raises the likelihood that

the low-type sender will be caught by the detector. So, a low-type sender’s payoff decreases in the true-

positive rate. Interestingly, a low-type sender’s payoff also decreases in the false-positive rate, though a

higher false-positive rate makes it harder to distinguish between the two types. The reason is as follows. A

low-type sender obtains a positive payoff only if there is no alarm and the receiver takes action rH in the

absence of an alarm. A higher false-positive rate does not reduce the low-type sender’s likelihood of being

detected. However, it leads to a smaller persuasive effect when there is no alarm (please refer to Figure 4

and the discussion in Section 4.1.1). The receiver’s posterior belief after observing no alarm decreases in α,

and the receiver uses a mixed strategy rather than always taking action rH when the belief hits ρ̂; this hurts
13The refinement does not drive the results on payoffs or welfare because the area in the detector’s capacity space {(α, β)|0 <

α ≤ β ≤ 1} with multiple equilibria, {(α, β)|α = 1 + [(1− ρ)∆R
L/(ρ∆

R
H)](1− β) or β = β̂ or α = β}, has measure zero.
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the low-type sender’s payoff.

As one can see from the proposition, a lower false-positive rate makes all players better off. This

property plays an important role when we study the optimal design of the detector.

4.2 Entire equilibrium

We now study the entire equilibrium where the detector is endogenously determined. Proposition 1 in

section 4.1 has characterized the sender’s and the receiver’s strategies for any given detector. So, we only

need to determine the designer’s strategy.

4.2.1 Optimal False-positive Rate and Alarm Rule Given True-positive Rate

Due to the constraint of the classifier’s capacity, the designer cannot obtain all detectors (β, α) ∈

{(β, α)|0 ≤ α < β ≤ 1} by choosing an alarm rule {λH , λL}. In particular, the space of the feasi-

ble detectors given a classifier ϕ is {(β, α)|β = ϕ(sL|θ = L)λL + ϕ(sH |θ = L)λH , α = ϕ(sL|θ =

H)λL +ϕ(sH |θ = H)λH , λL ∈ [0, 1], λH ∈ [0, 1]}. According to Proposition 2, a lower false-positive rate

increases the receiver’s and both senders’ expected payoffs for a given true-positive rate. Thus, the designer

always chooses the lowest feasible false-positive rate for any true-positive rate.

Lemma 5 (Optimal False-positive Rate and Alarm Rule Given True-positive Rate). For a given true-positive

rate β, the detector’s optimal false-positive rate, denoted by α∗(β;ϕ), is

α∗(β;ϕ) =


ϕ(sL|θ=H)
ϕ(sL|θ=L) β, if β ≤ ϕ(sL|θ = L)

ϕ(sH |θ=H)
ϕ(sH |θ=L) β + 1− ϕ(sH |θ=H)

ϕ(sH |θ=L) , if β > ϕ(sL|θ = L),

which increases in β. The detector {β, α∗(β;ϕ)} can be achieved by the alarm rule

λ∗
L(β) =


β

ϕ(sL|θ=L) , if β ≤ ϕ(sL|θ = L)

1, if β > ϕ(sL|θ = L)
, λ∗

H(β) =

 0, if β ≤ ϕ(sL|θ = L)

β−ϕ(sL|θ=L)
ϕ(sH |θ=L) , if β > ϕ(sL|θ = L).

Proof. See A.6

When choosing the alarm rule, the designer wants to achieve a given true-positive rate while minimizing

the false-positive rate. Since the sender is more likely to be a low type under signal sL than under signal sH ,
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the detector sends fewer false alarms, conditional on sending the same amount of true alarms, by sending

alarms after getting prediction sL rather than sH from the classifier. As a result, the designer prefers sending

an alarm after getting prediction sL. To achieve a low true-positive rate, the detector does not need to send

any alarms after getting prediction sH . So, λ∗
H(β) = 0 and λ∗

L(β) increases in β for low β, as illustrated by

Figure 8. Since each alarm falsely recognizes a high-type sender as a low-type with some probability, the

false-positive rate also increases in β.

Figure 8: Optimal alarm rule for a given true-positive rate

The true-positive rate is capped by ϕ(sL|θ = L) even if the detector always sends an alarm after getting

prediction sL. So, the detector must also sometimes send an alarm after getting prediction sH to achieve

a true-positive rate above ϕ(sL|θ = L). In such cases, λ∗
L(β) = 1 and λ∗

H(β) increases in β. In addition,

the likelihood of the sender being a low type is smaller given prediction sH rather than sL. Compared to

the low β case, the detector needs to raise the alarm probability by a larger value to add a unit to the true-

positive rate. Consequently, λ∗
H(β) and α∗(β;ϕ) increase in β in this case at a higher rate than do λ∗

L(β)

and α∗(β;ϕ) in the low β case.

Figure 9 demonstrates the classification performance of a given classifier under different designs of

the detector. The receiver operating characteristic curve (ROC curve) represents the Pareto frontier of the

classification outcome. The optimal detector must be a point on the ROC curve. As we can see, the false-

positive rate increases in the true-positive rate. The designer needs to sacrifice one metric in order to improve

the other. Furthermore, the false-positive rate increases in the true-positive rate at a lower rate when β is

low and at a higher rate when β is high.
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Figure 9: Receiver operating characteristic (ROC) curves

4.2.2 Optimal Design of Lie Detector

We now study the detector designer’s equilibrium strategy, which is the optimal choice of a feasible

detector, {β∗, α∗}. We have shown in Lemma 5 that the optimal false-positive rate is α∗(β;ϕ) given any

true-positive rate β. Therefore, we only need to pin down the optimal true-positive rate β∗.

The classifier is more likely to generate outcome sH if the sender’s type is H rather than L, ϕ(sH |θ =

H) > ϕ(sH |θ = L), and more likely to generate outcome sL if the sender’s type is L rather than H,

ϕ(sL|θ = L) > ϕ(sL|θ = H). It is more informative if ϕ(sH |θ = H)/ϕ(sH |θ = L) and ϕ(sL|θ =

L)/ϕ(sL|θ = H) are higher. This motivates the following definition, which is useful in the subsequent

analyses.

Definition 2. A classifier has a high capacity if ϕ(sH |θ = H)/ϕ(sH |θ = L) ≥ −(1 − ρ)∆R
L/(ρ∆

R
H) and

ϕ(sL|θ = L)/ϕ(sL|θ = H) ≥ (∆S
L−C)ρ∆R

H/[∆S
Lρ∆

R
H+(1−ρ)∆R

LC].14 Otherwise, it has a low capacity.

Maximizing Receiver’s Payoff

Proposition 3. The optimal true-positive rate of the detector that maximizes the receiver’s expected payoff

is any β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}], which minimizes the low-type sender’s equilibrium probability of

14We can set the thresholds to be any constants higher than one. The specific numbers are chosen because they are the cutoffs
affecting the optimal detector design.
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lying, if the lying cost is high, C ≥ Ĉ, and is β = ϕ(sL|θ = L) if the lying cost is low, C < Ĉ.15

Proof. See A.7.

The receiver benefits from making a more informed decision. She wants to better distinguish between

two types of senders. A low-type sender has a strong incentive to lie if the detector’s true positive rate is

low. The receiver will take action rL and obtain zero payoff upon observing an alarm because the sender is

highly likely to be type L. Even in the absence of an alarm, the combination of a high probability of lying

and a low detection rate implies that the receiver still has much uncertainty about the sender’s type (a weak

detector generates a small persuasive effect). Therefore, the receiver either follows a mixed strategy and

obtains zero payoff or takes action rH but earns a low payoff due to the high chance of taking the wrong

action when the sender’s true type is L. So, a low true-positive rate is not optimal for the receiver.

Upon observing an alarm, the receiver will be fairly confident that the sender is a low type if the detec-

tor’s true positive rate is high due to the large alarm effect of a strong detector. In the meantime, the receiver

will have a high posterior belief about the sender’s type and will always take action rH after receiving no

alarm (a strong detector generates a large persuasive effect). In ρ(1 − α) amount of time, the sender is a

high type, and the receiver earns a positive payoff of ∆R
H . In (1− ρ)σS(1− β) amount of time, the sender

is a low type, and the receiver earns a negative payoff of ∆R
L . As the true-positive rate β in increases, the

false-positive rate α also increases. So, both the benefit and the cost of action rH are reduced. The receiver

needs to make a trade-off. According to Lemma 5 and Figure 8, the detector’s false-positive rate increases

faster in its true-positive rate when the true-positive rate is high, β > ϕ(sL | θ = L). In such cases, the

benefit of action rH decreases at a high rate as β increases. So, a high true-positive rate is also not optimal

for the receiver.

In equilibrium, the optimal true-positive rate of the detector either minimizes the low-type sender’s

probability of lying or takes full advantage of the region where a unit increase in the true-positive rate

corresponds to a small increase in the false-positive rate. The intuition is that the receiver benefits from

a low percentage of misinformation and a good detection technology. The low-type sender’s equilibrium

probability of lying has a discrete downward jump at β̂ and is minimized at [β̂,max{β̂, ϕ(sL | θ = L)}].

When the lying cost is high, β̂ is low. A reasonable true-positive rate suffices to reduce the low-type sender’s

15The threshold Ĉ :=

[
ϕ(sH |θ=H)+

(1−ρ)∆R
L

ρ∆R
H

ϕ(sH |θ=L)

]
ϕ(sH |θ=L)[

ϕ(sH |θ=H)+
(1−ρ)∆R

L
ρ∆R

H

ϕ(sH |θ=L)−1

]
ϕ(sH |θ=L)+ϕ(sH |θ=H)

∆S
L
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probability of lying by a lot. The designer does not generate lots of false positive alarms by choosing such

a true-positive rate. A low equilibrium percentage of misinformation helps the receiver take the right action

and maximizes her expected payoff. When the lying cost is low, β̂ is high. In order to induce a low

probability of lying, the designer must choose a high true-positive rate, which comes with a high false-

positive rate. Despite a low equilibrium percentage of misinformation, the receiver will suffer from a false-

positive alarm and thus take a wrong action with a high likelihood. In such cases, a detector that generates a

lower proportion of false-positive alarms relative to true-positive alarms maximizes the receiver’s expected

payoff.

Maximizing High-type Sender’s Payoff

Proposition 4. The optimal true-positive rate of the detector that maximizes the high-type sender’s expected

payoff is β1 := [(1 − ρ)∆R
L + ρ∆R

H ]/[(1 − ρ)∆R
L + ρ∆R

Hϕ(sL|θ = H)/ϕ(sL|θ = L)], which is lower

than β̂ and decreases in ϕ(sL|θ = L)/ϕ(sL|θ = H), if the classifier has a high capacity, and is any

β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}] if the classifier has a low capacity.

Proof. See A.8.

A high-type sender wants the receiver to take action rH as frequently as possible. In equilibrium, the

receiver may take action rH or may adopt a mixed strategy if she observes message mH and no alarm.

Clearly, the sender prefers the receiver to always take action rH to increase his payoff. The lowest true-

positive rate that induces such behavior when the classifier has a high capacity, β1, is lower than the lowest

true-positive rate that induces such behavior when the classifier has a low capacity, β̂. This is because the

detector with the same true-positive rate has a lower false-positive rate and is thus a stronger detector under

a higher-capacity classifier. A stronger detector leads to a larger persuasive effect and makes it easier to

induce the receiver to take action rH .

The high-type sender does not want to further increase β once it is high enough such that the receiver will

always take action rH after observing message mH and no alarm. A higher true-positive rate corresponds

to a higher false-positive rate. As a result, the detector is more likely to send a false alarm when β is higher.

Because the receiver takes action rL with a positive probability when there is an alarm, the more frequent

false alarm hurts the sender’s payoff.

The classifier is better at distinguishing two types of senders if ϕ(sL|θ = L)/ϕ(sL|θ = H) is higher.
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When the classifier has a high capacity, we find that, counter-intuitively, the optimal true-positive rate is

decreasing in the classifier’s capacity - the optimal detector alarms a smaller percentage of misinformation

when its underlying classifier is better at distinguishing the sender’s type. The mechanism is the following.

The high-type sender wants to choose the lowest true-positive rate that induces the receiver to always take the

sender’s desired action rH upon seeing message mH and no alarm. Fixing a true-positive rate, the detector

has a lower false-positive rate if the classifier has a higher capacity. So, the receiver’s posterior belief after

observing message mH and no alarm is higher. The detector can induce the receiver to take action rH even

if its true-positive rate is adjusted downward. This way, the sender can still obtain the highest payoff without

a false-positive alarm and is less likely to be the object of a false alarm.

Maximizing Social Welfare

The designer, such as a platform, may care about both the sender and the receiver. For a given detector

(β, α∗(β;ϕ)), denote the receiver’s expected equilibrium payoff by EUR(β), the high-type sender’s ex-

pected equilibrium payoff by EUS
H(β), and the low-type sender’s expected equilibrium payoff by EUS

L (β).

The social welfare is EW (β) = EUR(β) + ρEUS
H(β) + (1 − ρ)EUS

L (β). The designer’s objective in this

case is to choose β to maximize EW (β).

Proposition 5. If the classifier has a low capacity, the optimal true-positive rate of the detector is any

β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}]. If the classifier has a high capacity, the optimal true-positive rate of

the detector must fall in
[
β1,max{β̂, ϕ(sL|θ = L)}

]
if the lying cost is high, C ≥ Ĉ, and must fall in

[β1, ϕ(sL|θ = L)] if the lying cost is low, C < Ĉ.

Proof. See A.9.

If the designer has access to a classifier with a low capacity, any β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}]

maximizes the receiver’s and both senders’ expected payoff.16 So, it also maximizes social welfare. If the

designer has access to a classifier with a high capacity, the receiver and the sender’s preferences towards

the detector are not aligned. We have shown that the optimal true-positive rate for the receiver is any

β ∈ [β̂,max{β̂, ϕ(sL | θ = L)}] if the lying cost is high and is ϕ(sL|θ = L) if the lying cost is low. In

contrast, the sender prefers a lower true-positive rate: the unique optimal true-positive rate for both types of

sender is β1. The optimal detector is a compromise between the receiver’s and the sender’s preferences.
16We characterize the optimal true-positive rate for the low-type sender in A.8
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Comparison With the No False-positive Alarm Benchmark

Compared to the no false-positive benchmark in section 3.2, the consideration of false positives leads

to qualitatively different results of detector design regardless of the designer’s objective. When there are no

false-positive alarms, there is no trade-off in the detector design, and the detector designer always prefers a

higher true-positive rate. In contrast, we have shown that the designer strictly prefers an intermediate true-

positive rate to the highest true-positive rate in the presence of false-negative alarms. A higher true-positive

rate may reduce the receiver’s expected payoff, the high-type sender’s expected payoff, and social welfare

when we take into account the possibility of false-positive alarms and the players’ strategic responses.

5 Conclusion

Misinformation detection is becoming increasingly important and relevant because it is easier than ever

to create and disseminate misinformation. To study the strategic interaction between misinformation gener-

ation and detection, this paper considers a game-theoretic model where a sender strategically communicates

his type to a receiver, and a lie detector generates a noisy signal on the truthfulness of the sender’s message.

The receiver then infers the sender’s type through messages from the sender and the detector.

Due to practical limitations, the detector may make two types of mistakes. It may fail to send an alarm

when the sender is lying (false negative). It may also send a false alarm when the sender is truthful (false pos-

itive). Previous work has focused on the first type of mistake by implicitly assuming that the false-positive

rate is zero. In reality, the sender cannot avoid making the second type of mistake unless he never sends

an alarm. A key contribution of this paper is to explicitly consider the practical constraints of classification

technology by allowing for both types of mistakes in misinformation detection. The other main contribution

of this paper is to endogenize the design of the detector rather than treating the detection technology as

exogenously given.

We first study how the detection technology affects the equilibrium outcomes. We find a non-monotonic

relationship between the sender’s probability of lying and the detection accuracy. A stronger detector in-

creases the sender’s probability of lying when the true-positive rate is low, because of a persuasive effect,

whereas a stronger detector decreases the sender’s probability of lying when the true-positive rate is high,

due to an alarm effect.

We then characterize the optimal detector design that maximizes the receiver’s payoff, the high-type
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sender’s payoff, or social welfare. The receiver and both types of sender all benefit from a lower false-

positive rate, whereas the low-type sender is hurt by a higher true-positive rate. Therefore, the designer

always chooses the lowest feasible false-positive rate given any true-positive rate. The possibility of false-

positive alarms implies that the designer will not choose the largest true-positive rate. Instead, the designer

chooses different intermediate true-positive rates for different objectives. Counter-intuitively, the optimal

detector may raise an alarm about a smaller percentage of misinformation when its underlying classifier is

better at distinguishing the sender’s type.

Our results have important managerial implications. Regarding the descriptive value, we find qualita-

tively different insights about the relationship between the sender’s probability of lying and the detector’s

accuracy when we allow for false-positive alarms. Without false-positive alarms, an alarm eliminates all the

uncertainty about the sender’s type. The receiver’s posterior belief goes all the way to zero after observing

an alarm. Thus, two detectors with different true-positive rates generate the same alarm effect. In contrast,

in the presence of false-positive alarms, two detectors with the same false-positive rate but different true-

positive rates generate different alarm effects. Variations in the alarm effects lead to the non-monotonic

relationship between the sender’s probability of lying and the detector’s accuracy.

Regarding the prescriptive value, we characterize the optimal design of the detector in the presence of

practical limitations. Importantly, the possibility of false-positive alarms implies that the designer should not

choose the largest true-positive rate. Instead, the designer should choose different intermediate true-positive

rates given different objectives. The optimal detector may even raise alarms about a smaller percentage

of misinformation when its underlying classifier is better at distinguishing the sender’s type. The qualita-

tively different and counter-intuitive findings highlight the importance of considering the interaction between

senders’ strategic behavior and both types of mistakes by the detection technology in practice.

There are some interesting areas for future research. In this paper, the sender cannot affect the detector’s

ability. Future research can consider the possibility that a sender can make an effort (and incur a cost)

to affect the detector’s ability. It also would be interesting to extend the sender’s type from binary to a

continuous type, which may generate additional insights. Lastly, we study the optimal detector design for

a given classifier. This setup reflects the fact that it is much harder to change the capacity of the classifier

than to change how to use an endowed classifier to detect misinformation and send alarms because it takes

lots of time, money, and data to train the classifier. Nevertheless, it may be interesting to also endogenize

the capacity of the classifier when it is feasible to change the classifier in some applications.
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Appendix A Proof

A.1 Proof of Lemma 1

We first prove an intuitive result that the receiver is less likely to take the sender’s desired action rH

when there is an alarm than when there is no alarm.

Lemma 6. Given β > α, σR(rH | mH , a) ≤ σR(rH | mH , na). More specifically, σR(rH | mH , na) ∈

[0, 1) ⇒ σR(rH | mH , a) = 0 and σR(rH | mH , a) ∈ (0, 1) ⇒ σR(rH | mH , na) = 1.

Proof. We first show that m = mH is an on-path message in equilibrium. Suppose that σS(mH | H) =

σS(mH | L) = 0 in a PBE. The corresponding receiver’s strategy after receiving m = mL is σR(rL |

mL, na) = 1 because (1 − ρ)∆R
L + ρ∆R

H < 0. So, deviating to σS(mH | H) > 0 is always profitable for

the sender with type θ = H , which gives a contradiction. Hence, there is no PBE such that σS(mH | H) =

σS(mH | L) = 0, and thereby m = mH must be an on-path message.

By the definition of PBE, the on-path belief satisfies

b(H | mH , a) =
ασS(mH | H)ρ

ασS(mH | H)ρ+ βσS(mH | L)(1− ρ)

b(H | mH , na) =
(1− α)σS(mH | H)ρ

(1− α)σS(mH | H)ρ+ (1− β)σS(mH | L)(1− ρ)

One can see that b(H | mH , na) > b(H | mH , a) given β > α.

Based on these beliefs, the best responses of the receiver should follow

σR(rH | mH , a)


= 1 b(H | mH , a)∆R

H + (1− b(H | mH , a))∆R
L > 0

∈ [0, 1] b(H | mH , a)∆R
H + (1− b(H | mH , a))∆R

L = 0

= 0 b(H | mH , a)∆R
H + (1− b(H | mH , a))∆R

L < 0

σR(rH | mH , na)


= 1 b(H | mH , na)∆R

H + (1− b(H | mH , na))∆R
L > 0

∈ [0, 1] b(H | mH , na)∆R
H + (1− b(H | mH , na))∆R

L = 0

= 0 b(H | mH , na)∆R
H + (1− b(H | mH , na))∆R

L < 0

Since b(H | mH , na) > b(H | mH , a), b(H | mH , a)∆R
H+(1−b(H | mH , a))∆R

L < b(H | mH , na)∆R
H+

(1− b(H | mH , na))∆R
L . Hence, σR(rH | mH , a) ≤ σR(rH | mH , na).

We now prove that σS(mH | H) = 1. Suppose that there is an equilibrium where σS(mL | H) > 0.
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Then,

σR(rH | mL, na)∆
S
H − C ≥

(
ασR(rH | mH , a) + (1− α)σR(rH | mH , na)

)
∆S

H

⇔ −C ≥
(
ασR(rH | mH , a) + (1− α)σR(rH | mH , na)− σR(rH | mL, na)

)
∆S

H

⇒ σR(rH | mL, na) > ασR(rH | mH , a) + (1− α)σR(rH | mH , na) (1)

We now show that a type L sender obtains a lower expected payoff from sending message m = mH rather

than m = mL:

1. If α = β, (
βσR(rH | mH , a) + (1− β)σR(rH | mH , na)

)
∆S

L − C

=
(
ασR(rH | mH , a) + (1− α)σR(rH | mH , na)

)
∆S

L − C

(1)
<σR(rH | mL, na)∆

S
L − C < σR(rH | mL, na)∆

S
L

2. If α < β, (
βσR(rH | mH , a) + (1− β)σR(rH | mH , na)

)
∆S

L − C

Lemma 6
≤

(
ασR(rH | mH , a) + (1− α)σR(rH | mH , na)

)
∆S

L − C

(1)
<σR(rH | mL, na)∆

S
L − C < σR(rH | mL, na)∆

S
L

Hence, the sender with θ = L always sends the message m = mL, σS(mL | L) = 1.

Since σS(mL | L) = 1, the receiver’s expected payoff given (m = mL, l = na) from taking r = rL

is always higher than it from taking r = rH , (1 − ρ)∆R
L + σS(mL | H)ρ∆R

H ≤ (1 − ρ)∆R
L + ρ∆R

H < 0.

Hence, σR(rH | mL, na) = 0, which contradicts to (1). Hence, σS(mH | H) = 1.

An immediate implication is that the receiver always takes action rL after receiving message mL, if

m = mL is an on-path message.

A.2 Proof of Lemma 2

Since α = β = 0, the receiver may only observe either {m = mH , l = na} or {m = mL, l = na}. So,

σR
na completely characterizes the receiver’s strategy. The best responses of the receiver and the sender to the
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opponent’s strategy are

σR
na,BR(σ

S)


= 1, σS < − ρ∆R

H

(1−ρ)∆R
L

∈ [0, 1], σS = − ρ∆R
H

(1−ρ)∆R
L

= 0, σS > − ρ∆R
H

(1−ρ)∆R
L

; σS
BR(σ

R
na)


= 1, σR

na > C
∆S

L

∈ [0, 1], σR
na = C

∆S
L

= 0, σR
na < C

∆S
L

A PBE satisfies σS∗
= σS

BR(σ
R
na

∗
) and σR

na
∗
= σR

na,BR(σ
S∗
). Hence, there exists a unique equilibrium,

σS∗
= −

ρ∆R
H

(1− ρ)∆R
L

, σR
na

∗
=

C

∆S
L

In this equilibrium, the utility of the receiver is EUR = 0, the utility of the type L sender is EUS
L = 0, and

the utility of the type H sender is EUS
H = C

∆S
L

∆S
H .

A.3 Proof of Lemma 3 and Proposition 1

For completeness, we also include the case of 0 < α = β in the proof. We first consider the equilibria

where a low-type sender always lies.

A.3.1 Equilibria where σS = 1

If the low-type sender always sends message m = mH (i.e., σS = 1), m = mL is an off-path message.

The receiver’s belief and his action after receiving m = mL can be arbitrary in a PBE as long as the sender

does not have a profitable deviation by sending m = mL.

Lemma 7. There exists a PBE with σS = 1 if and only if α ≤ 1 +
(1−ρ)∆R

L

ρ∆R
H

(1− β) and β ≤ β̂ := 1− C
∆S

L

.

Specifically, the set of equilibria is

{
(σR

a = 0, σR
na = 1, σR

L,na, σ
S = 1) : σR

L,na ≤ 1− β − C

∆S
L

}

if α < 1 +
(1−ρ)∆R

L

ρ∆R
H

(1− β) and β ≤ β̂, and the set of equilibria is

{
(σR

a = 0, σR
na, σ

R
L,na, σ

S = 1) : σR
L,na ≤ (1− β)σR

na −
C

∆S
L

, σR
na ∈

[
C

(1− β)∆S
L

, 1

]}

if α = 1 +
(1−ρ)∆R

L

ρ∆R
H

(1− β) and β ≤ β̂.
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Proof. If α = β and the low-type sender always lies, then the receiver always takes action r = rL since she

does not get new information about the sender’s type other than the prior. But then, the low-type sender can

be better off by not lying. There is no such PBE. So, we only need to consider β > α.

In a PBE where mL is an off-path message, both types of sender send mH . Avoiding profitable deviation

of both sender types requires σR
L,na ≤ βσR

a + (1− β)σR
na − C

∆S
L

and σR
L,na −

C
∆S

H

≤ ασR
a + (1−α)σR

na. By

Lemma 6, βσR
a +(1−β)σR

na ≤ ασR
a +(1−α)σR

na, so we only requires σR
L,na ≤ βσR

a +(1−β)σR
na− C

∆S
L

.

With σS = 1, the receiver’s on-path beliefs are b(H | mH , a) = αρ
αρ+β(1−ρ) ≤ ρ and b(H | mH , na) =

(1−α)ρ
(1−α)ρ+(1−β)(1−ρ) . We have σR

a = 0 since b(H | mH , a)∆R
H + (1− b(H | mH , a))∆R

L < 0. Then, the set

of equilibria can be represented as

{
(σR

a = 0, σR
na, σ

R
L,na, σ

S = 1) : σR
L,na ≤ (1− β)σR

na −
C

∆S
L

, σR
na ∈

[
C

(1− β)∆S
L

, 1

]}

There are two potential cases:

1. (1−α)ρ
(1−α)ρ+(1−β)(1−ρ)∆

R
H + (1−β)(1−ρ)

(1−α)ρ+(1−β)(1−ρ)∆
R
L > 0 (i.e., α < 1+

(1−ρ)∆R
L

ρ∆R
H

(1− β)): σR
na = 1. In this

case, to make the set above nonempty, we need β ≤ β̂.

2. (1−α)ρ
(1−α)ρ+(1−β)(1−ρ)∆

R
H + (1−β)(1−ρ)

(1−α)ρ+(1−β)(1−ρ)∆
R
L = 0 (i.e., α = 1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β)): σR
na ∈ [0, 1]. In

this case, to make the set above nonempty, we also need β ≤ β̂.

All in all, there exists a PBE with σS = 1 and σR
L,na ∈ [0, 1] if and only if α ≤ 1+

(1−ρ)∆R
L

ρ∆R
H

(1−β) and β ≤

β̂.

We then consider the equilibria where a low-type sender does not always lie.

A.3.2 Equilibria where σS < 1

In a PBE where m = mL is an on-path message (i.e., σS < 1), the definition of PBE requires the

receiver to have a consistent belief, b(L | mL, na) = 1, which means that anyone who sends m = mL must

be type θ = L. Hence, the receiver always takes action r = rL after receiving m = mL (i.e., σR
L,na = 0).

The sender with θ = L has expected payoff EUS
0 (σ

S ; {σR
na, σ

R
a }) = σS [

(
βσR

a + (1− β)σR
na

)
∆S

L −C]
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by playing strategy σS , whose best response to {σR
na, σ

R
a } is

σS
BR({σR

na, σ
R
a })


= 1,

(
βσR

a + (1− β)σR
na

)
∆S

L > C

∈ [0, 1],
(
βσR

a + (1− β)σR
na

)
∆S

L = C

= 0,
(
βσR

a + (1− β)σR
na

)
∆S

L < C

(BR1)

The best response of R with consistent belief to σS is given by

σR
a,BR(σ

S)


= 1, σS < − αρ∆R

H

β(1−ρ)∆R
L

∈ [0, 1], σS = − αρ∆R
H

β(1−ρ)∆R
L

= 0, σS > − αρ∆R
H

β(1−ρ)∆R
L

; σR
na,BR(σ

S)


= 1, σS < − (1−α)ρ∆R

H

(1−β)(1−ρ)∆R
L

∈ [0, 1], σS = − (1−α)ρ∆R
H

(1−β)(1−ρ)∆R
L

= 0, σS > − (1−α)ρ∆R
H

(1−β)(1−ρ)∆R
L

(BR2)

We now summarize the equilibrium for a given detector.

Equilibrium when α = β Given α = β ∈ (0, 1], the best response of the receiver can be written as


σR
a,BR(σ

S) = σR
na,BR(σ

S) = 1, σS < − ρ∆R
H

(1−ρ)∆R
L

σR
a,BR(σ

S) ∈ [0, 1], σR
na,BR(σ

S) ∈ [0, 1], σS = − ρ∆R
H

(1−ρ)∆R
L

σR
a,BR(σ

S) = σR
na,BR(σ

S) = 0, σS > − ρ∆R
H

(1−ρ)∆R
L

◦ Firstly, we consider the equilibrium with σS < − ρ∆R
H

(1−ρ)∆R
L

. Based on the best response of the receiver, we

have σR
a = σR

na = 1 in equilibrium. Since σS ∈ [0, 1), we need ∆S
L =

(
βσR

a + (1− β)σR
na

)
∆S

L ≤ C to

make the equilibrium holds (the inequality becomes equality if σS > 0). However, C < min{∆S
H ,∆S

L},

there is a contradiction. So, there is no such equilibrium.

◦ Secondly, we consider the equilibrium with σS = − ρ∆R
H

(1−ρ)∆R
L

. Based on the best response of the receiver

and the sender, σR
a and σR

na in equilibrium satisfy
(
βσR

a + (1− β)σR
na

)
∆S

L = C. That is, there exists an

equilibrium
{
σS = − ρ∆R

H

(1−ρ)∆R
L

, σR
na, σ

R
a

}
with

(
βσR

a + (1− β)σR
na

)
∆S

L = C.

◦ Thirdly, we consider the equilibrium with σS > − ρ∆R
H

(1−ρ)∆R
L

. Based on the best response of the receiver,

we have σR
a = σR

na = 0 in equilibrium. Since σS > 0, we need 0 =
(
βσR

a + (1− β)σR
na

)
∆S

L ≥ C to

make the equilibrium holds, which is impossible. So, there is no such equilibrium.
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Equilibrium when 0 < α < β (Proposition 1)

1. Separating equilibrium with σS = 0 implies σR
na = σR

a = 1, which requires ∆S
L ≤ C. There is a

contradiction to the definition of C, so there is no complete separating equilibrium.

2. Semi-pooling equilibrium with σS ∈ (0, 1) requires
(
βσR

a + (1− β)σR
na

)
∆S

L = C. By the Lemma

6 and (BR2), we can discuss potential equilibria by following cases:

(a) σR
na ∈ (0, 1) and σR

a = 0: this case requires

◦ σR
na = C

(1−β)∆S
L

∈ (0, 1) (i.e., β < β̂) and

◦ σS = − (1−α)ρ∆R
H

(1−β)(1−ρ)∆R
L

< 1 (i.e., α > 1 +
(1−ρ)∆R

L

ρ∆R
H

(1− β)).

(b) σR
na = 1 and σR

a = 0: this case requires

◦ σR
na = C

(1−β)∆S
L

= 1 (i.e., β = β̂) and

◦ σS ∈
[
− αρ∆R

H

β(1−ρ)∆R
L

,min
{
− (1−α)ρ∆R

H

(1−β)(1−ρ)∆R
L

, 1
}]

.

(c) σR
na = 1 and σR

a ∈ (0, 1): this case requires

◦ σR
a = C

β∆S
L

− 1−β
β ∈ (0, 1) (i.e., β > β̂) and

◦ σS = − αρ∆R
H

β(1−ρ)∆R
L

Table 2 summarizes the PBEs when α > 0.

β Range

α Range
α < 1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β) α = 1 +
(1−ρ)∆R

L

ρ∆R
H

(1− β) α ∈
(
1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β), β
)

α = β

β ∈
(
β̂, 1

]
σS = − αρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β

σS = − ρ∆R
H

(1−ρ)∆R
L

,

β = β̂ σS ∈
[
− αρ∆R

H

β(1−ρ)∆R
L

,min
{
− (1−α)ρ∆R

H

(1−β)(1−ρ)∆R
L

, 1
}]

, σR
na = 1, σR

a = 0 σR
na, σ

R
a

β ∈
(
0, β̂

) σS = 1, σS = 1, σS = − (1−α)ρ∆R
H

(1−β)(1−ρ)∆R
L

such that

σR
na = 1, σR

na ∈
[

C
(1−β)∆S

L

, 1
]
, σR

na = C
(1−β)∆S

L

, βσR
a + (1− β)σR

na

σR
a = 0 σR

a = 0 σR
a = 0 = C

∆S
L

Table 2: Equilibria with an exogenous detector

Equilibrium when 0 = α < β (Lemma 3)

1. Separating equilibrium with σS = 0 implies σR
na = 1 and requires (βσR

a + 1 − β)∆S
L ≤ C, i.e.,

σR
a ≤ C

β∆S
L

− 1−β
β . C

β∆S
L

− 1−β
β ≥ 0 only when β ≥ β̂.
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2. Semi-pooling equilibrium with σS ∈ (0, 1) requires
(
βσR

a + (1− β)σR
na

)
∆S

L = C. By the Lemma

6 and (BR2), we can discuss potential equilibria by following cases:

(a) σR
na ∈ (0, 1) and σR

a = 0: this case requires

◦ σR
na = C

(1−β)∆S
L

∈ (0, 1) (i.e., β < β̂) and

◦ σS = − ρ∆R
H

(1−β)(1−ρ)∆R
L

< 1 (i.e., β < 1 +
ρ∆R

H

(1−ρ)∆R
L

).

(b) σR
na = 1 and σR

a = 0: this case requires

◦ σR
na = C

(1−β)∆S
L

= 1 (i.e., β = β̂) and

◦ σS ∈
[
0,min

{
− ρ∆R

H

(1−β)(1−ρ)∆R
L

, 1
}]

.

(c) σR
na = 1 and σR

a ∈ (0, 1): this case requires

◦ σR
a = C

β∆S
L

− 1−β
β ∈ (0, 1) (i.e., β > β̂) and

◦ σS = 0

By Lemma 7, the PBEs with α = 0 are the following:

1. if C ≥ − ρ∆R
H

(1−ρ)∆R
L

∆S
L,


σS∗

= − ρ∆R
H

(1−β)(1−ρ)∆R
L

, σR
na

∗
= C

(1−β)∆S
L

, σR
a
∗
= 0, 0 < β < β̂ := β̂

σS∗ ∈
[
0,− ρ∆R

H

(1−β)(1−ρ)∆R
L

]
, σR

na
∗
= 1, σR

a
∗
= 0, β = β̂

σS∗
= 0, σR

na
∗
= 1, σR

a
∗ ≤ C

β∆S
L

− 1−β
β , β > β̂

2. if C < − ρ∆R
H

(1−ρ)∆R
L

∆S
L,



σS∗
= − ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na

∗
= C

(1−β)∆S
L

, σR
a
∗
= 0, 0 < β < 1 +

ρ∆R
H

(1−ρ)∆R
L

σS∗
= 1, σR

na
∗
=

[
C

(1−β)∆S
L

, 1
]
, σR

a
∗
= 0, β = 1 +

ρ∆R
H

(1−ρ)∆R
L

σS∗
= 1, σR

na
∗
= 1, σR

a
∗
= 0, 1 +

ρ∆R
H

(1−ρ)∆R
L

< β < β̂

σS∗ ∈ [0, 1] , σR
na

∗
= 1, σR

a
∗
= 0, β = β̂

σS∗
= 0, σR

na
∗
= 1, σR

a
∗ ≤ C

β∆S
L

− 1−β
β , β > β̂
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A.4 Refinement on Multiple Equilibria

When β = β̂, {− αρ∆R
H

β(1−ρ)∆R
L

, 1, 0} Pareto dominates other equilibria. When β ∈
(
0, β̂

)
and α =

1 +
(1−ρ)∆R

L(1−β)

ρ∆R
H

, {1, 1, 0} Pareto dominates other equilibria. Table 3 summarizes the equilibrium payoff

under this refinement.

β Range

α Range
α ≤ 1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β) α ∈
(
1 +

(1−ρ)∆R
L

ρ∆R
H

(1− β), β
]

[
β̂, 1

)
EUR =

(
1− α

β

)
ρ∆R

H , EUS
L = 0, EUS

H = ∆S
H − (∆S

L−C)∆S
H

∆S
L

α
β

(
0, β̂

) EUR = (1− β)(1− ρ)∆R
L + (1− α)ρ∆R

H , EUR = 0,

EUS
L = (1− β)∆S

L − C, EUS
L = 0,

EUS
H = (1− α)∆S

H EUS
H = C

∆S
L

∆S
H

1−α
1−β

Table 3: Equilibrium payoff under detector {β, α}

If β ∈
[
β̂, 1

)
, the equilibrium is σS = − αρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β . Since it is an

equilibrium with mixed strategies σS and σR
a , the low-type sender’s expected payoff is 0 and the receiver’s

expected payoff given an alarm is 0. So, the receiver’s expected payoff is ρ(1 − α)∆R
H + (1 − ρ)(1 −

β)σS∆R
L =

(
1− α

β

)
ρ∆R

H and the high-type sender’s expected payoff is (1 − α + ασR
a )∆

S
H = ∆S

H −
(∆S

L−C)∆S
H

∆S
L

α
β .

If β ∈
(
0, β̂

)
and α ≤ 1 +

(1−ρ)∆R
L

ρ∆R
H

(1 − β), the equilibrium is σS = 1, σR
na = 1, σR

a = 0. The

receiver’s expected payoff is (1 − β)(1 − ρ)∆R
L + (1 − α)ρ∆R

H , the low-type sender’s expected payoff is

(1− β)∆S
L − C, and the high-type sender’s expected payoff is (1− α)∆S

H .

If β ∈
(
0, β̂

)
and α > 1 +

(1−ρ)∆R
L

ρ∆R
H

(1 − β), the equilibrium is σS = − (1−α)ρ∆R
H

(1−β)(1−ρ)∆R
L

, σR
na =

C
(1−β)∆S

L

, σR
a = 0. Since it is an equilibrium with mixed strategies σS and σR

na, the low-type sender’s

expected payoff is 0 and the receiver’s expected payoff given no alarm is 0. As the receiver also gets zero

payoff given an alarm, the receiver’s expected payoff is 0. And the high-type sender’s expected payoff is

(1− α)σR
na∆

S
H = C

∆S
L

∆S
H

1−α
1−β .

A.5 Proof of Lemma 4

When there are multiple equilibria, we select the Pareto-optimal equilibrium. The refinement does

not drive the results because the area in the detector’s capacity space {(0, β)|0 ≤ β ≤ 1} with multiple

equilibria, {(0, β)|β = β̂ or β = 1 + ρ∆R
H/[(1− ρ)∆R

L ] and C < − ρ∆R
H

(1−ρ)∆R
L

∆S
L}, has measure zero.
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1. High lying cost C ≥ − ρ∆R
H

(1−ρ)∆R
L

∆S
L

EUS
L (β) = 0, EUS

H(β) =


C

(1−β)∆S
L

∆S
H , β < β̂

∆S
H , β ≥ β̂

, EUR(β) =

 0, β < β̂

ρ∆R
H , β ≥ β̂

EW (β) = EUR(β) + ρEUS
H(β) + (1− ρ)EUS

L (β) =

ρ C
(1−β)∆S

L

∆S
H , β < β̂

ρ(∆S
H +∆R

H), β ≥ β̂

One can see that EUR(β), EUS
H(β), and EW (β) all (weakly) increase in β. They achieve the maxi-

mum value at any β ≥ β̂.

2. Low lying cost C < − ρ∆R
H

(1−ρ)∆R
L

∆S
L

EUS
L (β) =


0, β < 1 +

ρ∆R
H

(1−ρ)∆R
L

(1− β)∆S
L − C, β ∈

[
1 +

ρ∆R
H

(1−ρ)∆R
L

, β̂
)

0, β ≥ β̂

,

EUS
H(β) =


C

(1−β)∆S
L

∆S
H , β < 1 +

ρ∆R
H

(1−ρ)∆R
L

∆S
H , β ≥ 1 +

ρ∆R
H

(1−ρ)∆R
L

,

EUR(β) =


0, β < 1 +

ρ∆R
H

(1−ρ)∆R
L

(1− β)(1− ρ)∆R
L + ρ∆R

H , β ∈
[
1 +

ρ∆R
H

(1−ρ)∆R
L

, β̂
)

ρ∆R
H , β ≥ β̂

EW (β) =


ρ C
(1−β)∆S

L

∆S
H , β < 1 +

ρ∆R
H

(1−ρ)∆R
L

(1− β)(1− ρ)(∆S
L +∆R

L) + ρ(∆S
H +∆R

H)− (1− ρ)C, β ∈
[
1 +

ρ∆R
H

(1−ρ)∆R
L

, β̂
)

ρ(∆S
H +∆R

H), β ≥ β̂

One can see that EUR(β), EUS
H(β), and EW (β) all (weakly) increase in β. EUR(β) and EW (β)

achieve the maximum value at any β ≥ β̂. EUS
H(β) achieves the maximum value at any β ≥ 1 +

ρ∆R
H/[(1− ρ)∆R

L ].
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A.6 Proof of Lemma 5

α∗(β) = min
λL,λH∈[0,1]

ϕ(sL|θ = H)λL + ϕ(sH |θ = H)λH ,

s.t. ϕ(sL|θ = L)λL + ϕ(sH |θ = L)λH = β

The constraint implies that

λL =
β − ϕ(sH |θ = L)λH

ϕ(sL|θ = L)
(C1)

Substituting (C1) into the objective function, one can see that the coefficient of λH is positive:

ϕ(sH |θ = H)− ϕ(sH |θ = L)ϕ(sL|θ = H)

ϕ(sL|θ = L)

=1− ϕ(sL|θ = H)− (1− ϕ(sL|θ = L))ϕ(sL|θ = H)

ϕ(sL|θ = L)

=1− ϕ(sL|θ = H)

ϕ(sL|θ = L)
> 0

Therefore, the optimal λ∗
H with λL = β−ϕ(sH |θ=L)λH

ϕ(sL|θ=L) should be the minimum feasible λH . The λH has re-

strictions: β−ϕ(sH |θ=L)λH

ϕ(sL|θ=L) ∈ [0, 1] and λH ∈ [0, 1]. So, the minimum feasible λH is max
{

β−ϕ(sL|θ=L)
ϕ(sH |θ=L) , 0

}
.

All in all,

λ∗
H = max

{
β − ϕ(sL|θ = L)

ϕ(sH |θ = L)
, 0

}
, λ∗

L =
β

ϕ(sL|θ = L)
− ϕ(sH |θ = L)

ϕ(sL|θ = L)
λ∗
1

If β ≤ ϕ(sL|θ = L), then we have

λ∗
H = 0, λ∗

L =
β

ϕ(sL|θ = L)
, α∗(β) =

ϕ(sL|θ = H)

ϕ(sL|θ = L)
β

If β > ϕ(sL|θ = L), then we have

λ∗
H =

β − ϕ(sL|θ = L)

ϕ(sH |θ = L)
, λ∗

L = 1

α∗(β) = ϕ(sL|θ = H) + ϕ(sH |θ = H)
β − ϕ(sL|θ = L)

ϕ(sH |θ = L)

=
ϕ(sH |θ = H)

ϕ(sH |θ = L)
β +

(
1− ϕ(sH |θ = H)

ϕ(sH |θ = L)

)
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A.7 Proof of Proposition 3

We first characterize the sender’s equilibrium strategy for a given detector {β, α∗(β;ϕ)}.

Lemma 8. For a classifier with a high capacity, the equilibria are


σS = − (1−α∗(β;ϕ))ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0, β ∈ [0, β1)

σS = 1, σR
na = 1, σR

a = 0, β ∈
[
β1, β̂

)
σS = −α∗(β;ϕ)ρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β , β ∈

[
β̂, 1

)

where β1 :=
(1−ρ)∆R

L+ρ∆R
H

(1−ρ)∆R
L+

ϕ(sL|θ=H)

ϕ(sL|θ=L)
ρ∆R

H

≤ β̂. For a classifier with a low capacity, the equilibria are


σS = − (1−α∗(β;ϕ))ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0, β ∈

[
0, β̂

)
σS = −α∗(β;ϕ)ρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β , β ∈

[
β̂, 1

)

Proof. By Proposition 1, the equilibria with β ≥ β̂ are directly given. Now, we focus on β ∈
[
0, β̂

)
,

in which case the form of equilibrium is determined by the value of 1−α∗(β;ϕ)
1−β . Specifically, the equilib-

rium is {σS = 1, σR
na = 1, σR

a = 0} if 1−α∗(β;ϕ)
1−β ≥ − (1−ρ)∆R

L

ρ∆R
H

and is {σS = − (1−α∗(β;ϕ))ρ∆R
H

(1−β)(1−ρ)∆R
L

, σR
na =

C
(1−β)∆S

L

, σR
a = 0} if 1−α∗(β;ϕ)

1−β < − (1−ρ)∆R
L

ρ∆R
H

.

Based on Lemma 5,

1− α∗(β;ϕ)

1− β
=

− β
1−β

ϕ(sL|θ=H)
ϕ(sL|θ=L) + 1

1−β , if β ≤ ϕ(sL|θ = L)

ϕ(sH |θ=H)
ϕ(sH |θ=L) if β > ϕ(sL|θ = L),

= min

{
− β

1− β

ϕ(sL|θ = H)

ϕ(sL|θ = L)
+

1

1− β
,
ϕ(sH |θ = H)

ϕ(sH |θ = L)

}
∈
[
1,

ϕ(sH |θ = H)

ϕ(sH |θ = L)

]

Let g(β) := − β
1−β

ϕ(sL|θ=H)
ϕ(sL|θ=L) + 1

1−β , which is increasing in β and g(β̂) = −∆S
L−C
C

ϕ(sL|θ=H)
ϕ(sL|θ=L) +

∆S
L

C .

◦ Given ϕ(sH |θ=H)
ϕ(sH |θ=L) < − (1−ρ)∆R

L

ρ∆R
H

or g(β̂) < − (1−ρ)∆R
L

ρ∆R
H

(ϕ(sL|θ=H)
ϕ(sL|θ=L) >

∆S
L

∆S
L−C

+
(1−ρ)∆R

L

ρ∆R
H

C
∆S

L−C
), the

1−α∗(β;ϕ)
1−β < − (1−ρ)∆R

L

ρ∆R
H

must be satisfied for all β ∈
[
0, β̂

)
. For all β ∈

[
0, β̂

)
, the equilibrium is

{σS = − (1−α∗(β;ϕ))ρ∆R
H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0}.

◦ Given ϕ(sH |θ=H)
ϕ(sH |θ=L) ≥ − (1−ρ)∆R

L

ρ∆R
H

and g(β̂) ≥ − (1−ρ)∆R
L

ρ∆R
H

(ϕ(sL|θ=H)
ϕ(sL|θ=L) ≤ ∆S

L

∆S
L−C

+
(1−ρ)∆R

L

ρ∆R
H

C
∆S

L−C
), one can

see that β1 ∈
(
0, β̂

]
satisfies g(β1) = − (1−ρ)∆R

L

ρ∆R
H

. Then, the equilibrium is
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
σS = − (1−α∗(β;ϕ))ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0, β ∈ [0, β1)

σS = 1, σR
na = 1, σR

a = 0, β ∈
[
β1, β̂

)

According to Lemma 8 and Table 3, EUR(β) =
(
1− α∗(β;ϕ)

β

)
ρ∆R

H is decreasing in β when β ∈[
β̂, 1

)
.

◦ If the classifier has a low capacity, EUR(β) = 0 for β ∈
[
0, β̂

)
. For β ≥ β̂, EUR (β) =

(
1− α∗(β;ϕ)

β

)
ρ∆R

H ,

which is constant for β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}] and is decreasing for β > max{β̂, ϕ(sL|θ = L)}.

◦ If the classifier has a high capacity, EUR (β) can be written as

EUR (β) =


0, β ∈ [0, β1)

(1− β)(1− ρ)∆R
L + (1− α∗(β;ϕ))ρ∆R

H , β ∈
[
β1, β̂

)
(
1− α∗(β;ϕ)

β

)
ρ∆R

H , β ∈
[
β̂, 1

)

Lemma 9. If ϕ(sH |θ=H)
ϕ(sH |θ=L) ≥ − (1−ρ)∆R

L

ρ∆R
H

, then ϕ(sL|θ = L) ≥ β1.

Proof. One can see that ϕ(sL|θ = L) =
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−1

ϕ(sH |θ=H)

ϕ(sH |θ=L)
−ϕ(sL|θ=H)

ϕ(sL|θ=L)

≥
− (1−ρ)∆R

L
ρ∆R

H

−1

−
(1−ρ)∆R

L
ρ∆R

H

−ϕ(sL|θ=H)

ϕ(sL|θ=L)

= β1 because

x−1

x−ϕ(sL|θ=H)

ϕ(sL|θ=L)

increases in x.

Recall that

α∗(β;ϕ) =


ϕ(sL|θ=H)
ϕ(sL|θ=L) β, β ≤ ϕ(sL|θ = L)

ϕ(sH |θ=H)
ϕ(sH |θ=L) β +

(
1− ϕ(sH |θ=H)

ϕ(sH |θ=L)

)
, β > ϕ(sL|θ = L)

The high capacity requires ϕ(sL|θ=H)
ϕ(sL|θ=L) ≤ ∆S

L

∆S
L−C

+
(1−ρ)∆R

L

ρ∆R
H

(
∆S

L

∆S
L−C

− 1
)

, i.e., β̂ ≥
− (1−ρ)∆R

L
ρ∆R

H

−1

−
(1−ρ)∆R

L
ρ∆R

H

−ϕ(sL|θ=H)

ϕ(sL|θ=L)

.

Note that
− (1−ρ)∆R

L
ρ∆R

H

−1

−
(1−ρ)∆R

L
ρ∆R

H

−ϕ(sL|θ=H)

ϕ(sL|θ=L)

= 1

1−ϕ(sL|θ=H)
ϕ(sL|θ=L)

−
(1−ρ)∆R

L
ρ∆R

H

−1

+1

≤ 1

1−ϕ(sL|θ=H)
ϕ(sL|θ=L)

ϕ(sH |θ=H)
ϕ(sH |θ=L)

−1
+1

= ϕ(sL|θ = L), the relationship

between ϕ(sL|θ = L) and β̂ is undetermined. So, we discuss the following two cases:
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(a) If β̂ > ϕ(sL|θ = L),

∂EUR (β)

∂β
=

−(1− ρ)∆R
L − ϕ(sL|θ=H)

ϕ(sL|θ=L) ρ∆
R
H > 0, β ∈ [β1, ϕ(sL|θ = L))

−(1− ρ)∆R
L − ϕ(sH |θ=H)

ϕ(sH |θ=L) ρ∆
R
H ≤ 0, β ∈

[
ϕ(sL|θ = L), β̂

)
So, EUR (β) is maximized at ϕ(sL|θ = L) for β ∈ [β1, β̂). Since EUR (β) = 0 for all β ≤ β1 and

EUR (β) is maximized at β̂ for β ∈ [β̂, 1), the maximizer of EUR (β) among β ∈ [0, 1] must be β̂

or ϕ(sL|θ = L). Thus, we only need to compare EUR
(
β̂
)

and EUR (ϕ(sL|θ = L)):

EUR
(
β̂
)
=

(
1

β̂
− 1

)(
ϕ(sH |θ = H)

ϕ(sH |θ = L)
− 1

)
ρ∆R

H

EUR (ϕ(sL|θ = L)) = ϕ(sH |θ = L)(1− ρ)∆R
L + ϕ(sH |θ = H)ρ∆R

H

= ϕ(sH |θ = L)

(
(1− ρ)∆R

L + ρ∆R
H

ϕ(sH |θ = H)

ϕ(sH |θ = L)

)

EUR
(
β̂
)
≥ EUR (ϕ(sL|θ = L)) if and only if

β̂ ≤ 1

ϕ(sH |θ=H)−
(
−

(1−ρ)∆R
L

ρ∆R
H

ϕ(sH |θ=L)

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−1

+ 1

=
1

ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−ϕ(sL|θ=H)

ϕ(sL|θ=L)

1−ϕ(sL|θ=H)

ϕ(sL|θ=L)

ϕ(sH |θ=H)

ϕ(sH |θ=L)
−1

+ 1

=
ϕ(sH | θ = H)− ϕ(sH | θ = L)[

ϕ(sH |θ = H) +
(1−ρ)∆R

L

ρ∆R
H

ϕ(sH | θ = L)
]
ϕ(sH | θ = L) + ϕ(sH | θ = H)− ϕ(sH | θ = L)

=:β̂critical,

where β̂critical is increasing in ϕ(sL|θ=H)
ϕ(sL|θ=L) .

(b) If β̂ ≤ ϕ(sL|θ = L),

∂EUR (β)

∂β
= −(1− ρ)∆R

L − ϕ(sL|θ = H)

ϕ(sL|θ = L)
ρ∆R

H > 0,β ∈
[
β1, β̂

)

Hence, all β ∈
[
β1, β̂

)
is dominated by β = β̂. We can also find EUR (β) is constant for β ∈

[β̂, ϕ(sL|θ = L)] and decreasing for β > ϕ(sL|θ = L).

All in all, if the classifier has a high capacity, the optimal true-positive rate for the receiver is any β ∈

[β̂,max{β̂, ϕ(sL|θ = L)}] if β̂ ≤ β̂critical and is β = ϕ(sL|θ = L) if β̂ > β̂critical.
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We can prove that β̂critical > β̂ always holds if the classifier has a low capacity:

Lemma 10. If the classifier has a low capacity, then β̂critical > β̂.

Proof. The threshold β̂critical can be rewritten as

β̂critical =
1

ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−1

−
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−ϕ(sL|θ=H)

ϕ(sL|θ=L)

+ 1

A classifier with a low capacity means ϕ(sH |θ=H)
ϕ(sH |θ=L) < − (1−ρ)∆R

L

ρ∆R
H

or ϕ(sL|θ=H)
ϕ(sL|θ=L) >

∆S
L

∆S
L−C

+
(1−ρ)∆R

L

ρ∆R
H

C
∆S

L−C
.

If ϕ(sH |θ=H)
ϕ(sH |θ=L) < − (1−ρ)∆R

L

ρ∆R
H

, β̂critical > 1 > β̂. Then, we consider the case that ϕ(sH |θ=H)
ϕ(sH |θ=L) ≥ − (1−ρ)∆R

L

ρ∆R
H

and

ϕ(sL|θ=H)
ϕ(sL|θ=L) >

∆S
L

∆S
L−C

+
(1−ρ)∆R

L

ρ∆R
H

C
∆S

L−C
= − (1−ρ)∆R

L

ρ∆R
H

−
(
− (1−ρ)∆R

L

ρ∆R
H

− 1
)

1
β̂

. In this case,

β̂critical >
1

ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−1

−
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
ϕ(sH |θ=H)

ϕ(sH |θ=L)
−
(
−

(1−ρ)∆R
L

ρ∆R
H

)
+

(
−

(1−ρ)∆R
L

ρ∆R
H

−1

)
1

β̂

+ 1

The right-hand side ≥ β̂

⇔ 1

β̂
+

ϕ(sH |θ=H)
ϕ(sH |θ=L) −

(
− (1−ρ)∆R

L

ρ∆R
H

)
ϕ(sH |θ=H)
ϕ(sH |θ=L) −

(
− (1−ρ)∆R

L

ρ∆R
H

)
+
(
− (1−ρ)∆R

L

ρ∆R
H

− 1
)

1
β̂

≥
ϕ(sH |θ=H)
ϕ(sH |θ=L) −

(
− (1−ρ)∆R

L

ρ∆R
H

)
ϕ(sH |θ=H)
ϕ(sH |θ=L) − 1

+ 1

Consider a function f(x) := x + k
k+tx , where k, t are non-negative constant and x ∈ [1,∞). Since

f ′(x) = 1− tk
(k+tx)2

≥ 1− 1
4x > 0 for all x ∈ [1,∞), f(x) is minimized at x = 1. So, the above inequality

always holds. Therefore, β̂critical > β̂ holds.

We can conclude that the optimal true-positive rate for the receiver is any β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}]

if β̂ ≤ β̂critical and is β = ϕ(sL|θ = L) if β̂ > β̂critical. Lastly, one can see that

β̂ ≤ β̂critical

⇔ C ≥ Ĉ =

[
ϕ(sH |θ = H) +

(1−ρ)∆R
L

ρ∆R
H

ϕ(sH | θ = L)
]
ϕ(sH | θ = L)[

ϕ(sH |θ = H) +
(1−ρ)∆R

L

ρ∆R
H

ϕ(sH | θ = L)− 1
]
ϕ(sH | θ = L) + ϕ(sH | θ = H)

∆S
L.

A.8 Proof of Proposition 4

1. Classifier with a low capacity
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According to Lemma 8, the equilibria are


σS = − (1−α∗(β;ϕ))ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0, β ∈

[
0, β̂

)
σS = −α∗(β;ϕ)ρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β , β ∈

[
β̂, 1

)
So, the payoff of the low-type sender is EUS

L (β) = 0 and the payoff of the high-type sender is

EUS
H(β) =


C

∆S
H

∆S
L

1−α∗(β;ϕ)
1−β , β ∈

[
0, β̂

)
∆S

H − (∆S
L − C)

∆S
H

∆S
L

α∗(β;ϕ)
β , β ∈

[
β̂, 1

)
For β ∈ [0, β̂), EUS

H(β) is weakly increasing and is dominated by β = β̂. EUS
H(β) is constant for

β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}] and is decreasing for β > max{β̂, ϕ(sL|θ = L)}. So, in this case,

EUS
H(β) is maximized at β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}].

2. Classifier with a high capacity

According to Lemma 8, the equilibria are


σS = − (1−α∗(β;ϕ))ρ∆R

H

(1−β)(1−ρ)∆R
L

, σR
na = C

(1−β)∆S
L

, σR
a = 0, β ∈ [0, β1)

σS = 1, σR
na = 1, σR

a = 0, β ∈
[
β1, β̂

)
σS = −α∗(β;ϕ)ρ∆R

H

β(1−ρ)∆R
L

, σR
na = 1, σR

a = C
β∆S

L

− 1−β
β , β ∈

[
β̂, 1

)
So, the payoff of the low-type sender is

EUS
L (β) =


0, β ∈ [0, β1)

(1− β)∆S
L − C β ∈

[
β1, β̂

)
0, β ∈

[
β̂, 1

)
and the utility of the high-type sender is

EUS
H(β) =


C

∆S
H

∆S
L

1−α∗(β;ϕ)
1−β β ∈ [0, β1)

(1− α∗(β;ϕ))∆S
H , β ∈

[
β1, β̂

)
∆S

H − (∆S
L − C)

∆S
H

∆S
L

α∗(β;ϕ)
β , β ∈

[
β̂, 1

)
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Note that we have proved ϕ(sL|θ = L) ≥ β1 for a strong classifier in Lemma 9. Hence, for β ∈

[0, β1), EUS
H(β) is increasing in β. Moreover, EUS

H(β) is decreasing in β ∈
[
β1, β̂

)
, constant for

β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}], and decreasing for β > max{β̂, ϕ(sL|θ = L)}.

Since EUS
H(β̂) = ∆S

H − (∆S
L − C)

∆S
H

∆S
L

α∗(β̂;ϕ)

β̂
= (1 − α∗(β̂;ϕ))∆S

H ≤ (1 − α∗(β1;ϕ))∆
S
H =

EUS
H(β1), EUS

H(β) is maximized at β1. One can see that EUS
L (β) is also maximized at β1.

To show that β1 =
(1−ρ)∆R

L+ρ∆R
H

(1−ρ)∆R
L+

ϕ(sL|θ=H)

ϕ(sL|θ=L)
ρ∆R

H

decreases in ϕ(sL|θ=L)
ϕ(sL|θ=H) , one just need to observe that the

numerator of β1 is negative, (1− ρ)∆R
L < 0, and ρ∆R

H > 0.

A.9 Proof of Proposition 5

Firstly, we consider the situation where the classifier has a low capacity. According to Proposition 3 and

Proposition 4, β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}] is the optimal detector for both the receiver and the sender.

Hence, β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}] maximizes social welfare.

Secondly, we consider the situation where the classifier has a high capacity. The social welfare can be

given as follows:

EW (β) = EUR(β) + (1− ρ)EUS
L (β) + ρEUS

H(β)

=


ρC 1−α∗(β;ϕ)

1−β β ∈ [0, β1)

ρ(1− α∗(β;ϕ))(∆S
H +∆R

H) + (1− ρ)
[
(1− β)(∆S

L +∆R
L)− C

]
β ∈

[
β1, β̂

)
ρ
(
1− α∗(β;ϕ)

β

)
(∆S

H +∆R
H) + ρC α∗(β;ϕ)

β , β ∈
[
β̂, 1

)
According to Proposition 3 and Proposition 4, {β∗ ∈ [β̂,max{β̂, ϕ(sL|θ = L)}], α∗ = α∗(β∗;ϕ)} is the

optimal lie detector for the receiver if β̂ ≤ β̂critical, {β∗ = ϕ(sL | θ = L), α∗ = α∗(β∗;ϕ)} is the optimal

lie detector for the receiver if β̂ ≥ β̂critical, and {β∗ = β1, α
∗ = α∗(β∗;ϕ)} is the optimal lie detector for the

sender.

If β̂ ≤ β̂critical, we have

EW (β) = EUR(β)︸ ︷︷ ︸
maximized at anyβ∈[β̂,max{β̂,ϕ(sL|θ=L)}]

+(1− ρ)EUS
L (β) + ρEUS

H(β)︸ ︷︷ ︸
maximized at β=β1

One can see that EW (β) is constant for β ∈ [β̂,max{β̂, ϕ(sL|θ = L)}], decreases in β for β ∈ [max{β̂, ϕ(sL|θ =
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L)}, 1), and increases in β for β ∈ [0, β1). So, there exists an optimal β that falls in
[
β1,max{β̂, ϕ(sL|θ = L)}

]
.

If β̂ > β̂critical, we have

EW (β) = EUR(β)︸ ︷︷ ︸
maximized at β=ϕ(sL|θ=L)

+(1− ρ)EUS
L (β) + ρEUS

H(β)︸ ︷︷ ︸
maximized at β=β1

According to Lemma 9, ϕ(sL | θ = L) ≥ β1. One can see that EW (β) decreases in β for β ∈

[ϕ(sL | θ = L), 1) and increases in β for β ∈ [0, β1). So, the optimal true-positive rate of the detector

β must fall in [β1, ϕ(sL | θ = L)].

Lastly, we have shown that β̂ ≤ β̂critical ⇔ C ≥ Ĉ in A.7.
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